Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lightning-ai/pytorch-lightning

Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.
https://github.com/lightning-ai/pytorch-lightning

ai artificial-intelligence data-science deep-learning machine-learning python pytorch

Last synced: 1 day ago
JSON representation

Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.

Awesome Lists containing this project

README

        

Lightning




**The deep learning framework to pretrain, finetune and deploy AI models.**

**NEW- Deploying models? Check out [LitServe](https://github.com/Lightning-AI/litserve), the PyTorch Lightning for model serving**

______________________________________________________________________


Quick start
Examples
PyTorch Lightning
Fabric
Lightning AI
Community
Docs

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)](https://pypi.org/project/pytorch-lightning/)
[![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning)
[![Conda](https://img.shields.io/conda/v/conda-forge/lightning?label=conda&color=success)](https://anaconda.org/conda-forge/lightning)
[![codecov](https://codecov.io/gh/Lightning-AI/pytorch-lightning/graph/badge.svg?token=SmzX8mnKlA)](https://codecov.io/gh/Lightning-AI/pytorch-lightning)

[![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa)
![GitHub commit activity](https://img.shields.io/github/commit-activity/w/lightning-ai/lightning)
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/lightning/blob/master/LICENSE)



 


Get started

 

# Lightning has 2 core packages

[PyTorch Lightning: Train and deploy PyTorch at scale](#why-pytorch-lightning).


[Lightning Fabric: Expert control](#lightning-fabric-expert-control).

Lightning gives you granular control over how much abstraction you want to add over PyTorch.



 

# Quick start
Install Lightning:

```bash
pip install lightning
```

Advanced install options

#### Install with optional dependencies

```bash
pip install lightning['extra']
```

#### Conda

```bash
conda install lightning -c conda-forge
```

#### Install stable version

Install future release from the source

```bash
pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/release/stable.zip -U
```

#### Install bleeding-edge

Install nightly from the source (no guarantees)

```bash
pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/master.zip -U
```

or from testing PyPI

```bash
pip install -iU https://test.pypi.org/simple/ pytorch-lightning
```

### PyTorch Lightning example
Define the training workflow. Here's a toy example ([explore real examples](https://lightning.ai/lightning-ai/studios?view=public&section=featured&query=pytorch+lightning)):

```python
# main.py
# ! pip install torchvision
import torch, torch.nn as nn, torch.utils.data as data, torchvision as tv, torch.nn.functional as F
import lightning as L

# --------------------------------
# Step 1: Define a LightningModule
# --------------------------------
# A LightningModule (nn.Module subclass) defines a full *system*
# (ie: an LLM, diffusion model, autoencoder, or simple image classifier).

class LitAutoEncoder(L.LightningModule):
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))

def forward(self, x):
# in lightning, forward defines the prediction/inference actions
embedding = self.encoder(x)
return embedding

def training_step(self, batch, batch_idx):
# training_step defines the train loop. It is independent of forward
x, _ = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
self.log("train_loss", loss)
return loss

def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer

# -------------------
# Step 2: Define data
# -------------------
dataset = tv.datasets.MNIST(".", download=True, transform=tv.transforms.ToTensor())
train, val = data.random_split(dataset, [55000, 5000])

# -------------------
# Step 3: Train
# -------------------
autoencoder = LitAutoEncoder()
trainer = L.Trainer()
trainer.fit(autoencoder, data.DataLoader(train), data.DataLoader(val))
```

Run the model on your terminal

```bash
pip install torchvision
python main.py
```

 

# Why PyTorch Lightning?

PyTorch Lightning is just organized PyTorch - Lightning disentangles PyTorch code to decouple the science from the engineering.

![PT to PL](docs/source-pytorch/_static/images/general/pl_quick_start_full_compressed.gif)

 

----

### Examples
Explore various types of training possible with PyTorch Lightning. Pretrain and finetune ANY kind of model to perform ANY task like classification, segmentation, summarization and more:

| Task | Description | Run |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---|
| [Hello world](#hello-simple-model) | Pretrain - Hello world example | Open In Studio |
| [Image classification](https://lightning.ai/lightning-ai/studios/image-classification-with-pytorch-lightning) | Finetune - ResNet-34 model to classify images of cars | Open In Studio |
| [Image segmentation](https://lightning.ai/lightning-ai/studios/image-segmentation-with-pytorch-lightning) | Finetune - ResNet-50 model to segment images | Open In Studio |
| [Object detection](https://lightning.ai/lightning-ai/studios/object-detection-with-pytorch-lightning) | Finetune - Faster R-CNN model to detect objects | Open In Studio |
| [Text classification](https://lightning.ai/lightning-ai/studios/text-classification-with-pytorch-lightning) | Finetune - text classifier (BERT model) | Open In Studio |
| [Text summarization](https://lightning.ai/lightning-ai/studios/text-summarization-with-pytorch-lightning) | Finetune - text summarization (Hugging Face transformer model) | Open In Studio |
| [Audio generation](https://lightning.ai/lightning-ai/studios/finetune-a-personal-ai-music-generator) | Finetune - audio generator (transformer model) | Open In Studio |
| [LLM finetuning](https://lightning.ai/lightning-ai/studios/finetune-an-llm-with-pytorch-lightning) | Finetune - LLM (Meta Llama 3.1 8B) | Open In Studio |
| [Image generation](https://lightning.ai/lightning-ai/studios/train-a-diffusion-model-with-pytorch-lightning) | Pretrain - Image generator (diffusion model) | Open In Studio |
| [Recommendation system](https://lightning.ai/lightning-ai/studios/recommendation-system-with-pytorch-lightning) | Train - recommendation system (factorization and embedding) | Open In Studio |
| [Time-series forecasting](https://lightning.ai/lightning-ai/studios/time-series-forecasting-with-pytorch-lightning) | Train - Time-series forecasting with LSTM | Open In Studio |

______________________________________________________________________

## Advanced features

Lightning has over [40+ advanced features](https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-flags) designed for professional AI research at scale.

Here are some examples:



Train on 1000s of GPUs without code changes

```python
# 8 GPUs
# no code changes needed
trainer = Trainer(accelerator="gpu", devices=8)

# 256 GPUs
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=32)
```

Train on other accelerators like TPUs without code changes

```python
# no code changes needed
trainer = Trainer(accelerator="tpu", devices=8)
```

16-bit precision

```python
# no code changes needed
trainer = Trainer(precision=16)
```

Experiment managers

```python
from lightning import loggers

# tensorboard
trainer = Trainer(logger=TensorBoardLogger("logs/"))

# weights and biases
trainer = Trainer(logger=loggers.WandbLogger())

# comet
trainer = Trainer(logger=loggers.CometLogger())

# mlflow
trainer = Trainer(logger=loggers.MLFlowLogger())

# neptune
trainer = Trainer(logger=loggers.NeptuneLogger())

# ... and dozens more
```

Early Stopping

```python
es = EarlyStopping(monitor="val_loss")
trainer = Trainer(callbacks=[es])
```

Checkpointing

```python
checkpointing = ModelCheckpoint(monitor="val_loss")
trainer = Trainer(callbacks=[checkpointing])
```

Export to torchscript (JIT) (production use)

```python
# torchscript
autoencoder = LitAutoEncoder()
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
```

Export to ONNX (production use)

```python
# onnx
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
autoencoder = LitAutoEncoder()
input_sample = torch.randn((1, 64))
autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
os.path.isfile(tmpfile.name)
```

______________________________________________________________________

## Advantages over unstructured PyTorch

- Models become hardware agnostic
- Code is clear to read because engineering code is abstracted away
- Easier to reproduce
- Make fewer mistakes because lightning handles the tricky engineering
- Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
- Lightning has dozens of integrations with popular machine learning tools.
- [Tested rigorously with every new PR](https://github.com/Lightning-AI/lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
- Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).

______________________________________________________________________


Read the PyTorch Lightning docs

______________________________________________________________________

 
 

# Lightning Fabric: Expert control

Run on any device at any scale with expert-level control over PyTorch training loop and scaling strategy. You can even write your own Trainer.

Fabric is designed for the most complex models like foundation model scaling, LLMs, diffusion, transformers, reinforcement learning, active learning. Of any size.

What to change
Resulting Fabric Code (copy me!)

```diff
+ import lightning as L
import torch; import torchvision as tv

dataset = tv.datasets.CIFAR10("data", download=True,
train=True,
transform=tv.transforms.ToTensor())

+ fabric = L.Fabric()
+ fabric.launch()

model = tv.models.resnet18()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
- device = "cuda" if torch.cuda.is_available() else "cpu"
- model.to(device)
+ model, optimizer = fabric.setup(model, optimizer)

dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
+ dataloader = fabric.setup_dataloaders(dataloader)

model.train()
num_epochs = 10
for epoch in range(num_epochs):
for batch in dataloader:
inputs, labels = batch
- inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(outputs, labels)
- loss.backward()
+ fabric.backward(loss)
optimizer.step()
print(loss.data)
```

```Python
import lightning as L
import torch; import torchvision as tv

dataset = tv.datasets.CIFAR10("data", download=True,
train=True,
transform=tv.transforms.ToTensor())

fabric = L.Fabric()
fabric.launch()

model = tv.models.resnet18()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
model, optimizer = fabric.setup(model, optimizer)

dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
dataloader = fabric.setup_dataloaders(dataloader)

model.train()
num_epochs = 10
for epoch in range(num_epochs):
for batch in dataloader:
inputs, labels = batch
optimizer.zero_grad()
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(outputs, labels)
fabric.backward(loss)
optimizer.step()
print(loss.data)
```

## Key features

Easily switch from running on CPU to GPU (Apple Silicon, CUDA, …), TPU, multi-GPU or even multi-node training

```python
# Use your available hardware
# no code changes needed
fabric = Fabric()

# Run on GPUs (CUDA or MPS)
fabric = Fabric(accelerator="gpu")

# 8 GPUs
fabric = Fabric(accelerator="gpu", devices=8)

# 256 GPUs, multi-node
fabric = Fabric(accelerator="gpu", devices=8, num_nodes=32)

# Run on TPUs
fabric = Fabric(accelerator="tpu")
```

Use state-of-the-art distributed training strategies (DDP, FSDP, DeepSpeed) and mixed precision out of the box

```python
# Use state-of-the-art distributed training techniques
fabric = Fabric(strategy="ddp")
fabric = Fabric(strategy="deepspeed")
fabric = Fabric(strategy="fsdp")

# Switch the precision
fabric = Fabric(precision="16-mixed")
fabric = Fabric(precision="64")
```

All the device logic boilerplate is handled for you

```diff
# no more of this!
- model.to(device)
- batch.to(device)
```

Build your own custom Trainer using Fabric primitives for training checkpointing, logging, and more

```python
import lightning as L

class MyCustomTrainer:
def __init__(self, accelerator="auto", strategy="auto", devices="auto", precision="32-true"):
self.fabric = L.Fabric(accelerator=accelerator, strategy=strategy, devices=devices, precision=precision)

def fit(self, model, optimizer, dataloader, max_epochs):
self.fabric.launch()

model, optimizer = self.fabric.setup(model, optimizer)
dataloader = self.fabric.setup_dataloaders(dataloader)
model.train()

for epoch in range(max_epochs):
for batch in dataloader:
input, target = batch
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
self.fabric.backward(loss)
optimizer.step()
```

You can find a more extensive example in our [examples](examples/fabric/build_your_own_trainer)

______________________________________________________________________


Read the Lightning Fabric docs

______________________________________________________________________

 
 

## Examples

###### Self-supervised Learning

- [CPC transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#cpc-transforms)
- [Moco v2 transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#moco-v2-transforms)
- [SimCLR transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#simclr-transforms)

###### Convolutional Architectures

- [GPT-2](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#gpt-2)
- [UNet](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#unet)

###### Reinforcement Learning

- [DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#dqn-loss)
- [Double DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#double-dqn-loss)
- [Per DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#per-dqn-loss)

###### GANs

- [Basic GAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#basic-gan)
- [DCGAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#dcgan)

###### Classic ML

- [Logistic Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#logistic-regression)
- [Linear Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#linear-regression)

 
 

## Continuous Integration

Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.

###### \*Codecov is > 90%+ but build delays may show less

Current build statuses

| System / PyTorch ver. | 1.13 | 2.0 | 2.1 |
| :--------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| Linux py3.9 \[GPUs\] | | | [![Build Status](https://dev.azure.com/Lightning-AI/lightning/_apis/build/status%2Fpytorch-lightning%20%28GPUs%29?branchName=master)](https://dev.azure.com/Lightning-AI/lightning/_build/latest?definitionId=24&branchName=master) |
| Linux (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |
| OSX (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |
| Windows (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |

 
 

## Community

The lightning community is maintained by

- [10+ core contributors](https://lightning.ai/docs/pytorch/latest/community/governance.html) who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.
- 800+ community contributors.

Want to help us build Lightning and reduce boilerplate for thousands of researchers? [Learn how to make your first contribution here](https://lightning.ai/docs/pytorch/stable/generated/CONTRIBUTING.html)

Lightning is also part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/) which requires projects to have solid testing, documentation and support.

### Asking for help

If you have any questions please:

1. [Read the docs](https://lightning.ai/docs).
1. [Search through existing Discussions](https://github.com/Lightning-AI/lightning/discussions), or [add a new question](https://github.com/Lightning-AI/lightning/discussions/new)
1. [Join our discord](https://discord.com/invite/tfXFetEZxv).