Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lijin-THU/notes-python

中文 Python 笔记
https://github.com/lijin-THU/notes-python

anaconda matplotlib numpy python scipy theano

Last synced: 2 days ago
JSON representation

中文 Python 笔记

Awesome Lists containing this project

README

        

[![Analytics](https://ga-beacon.appspot.com/UA-80121379-2/notes-python)](https://github.com/lijin-thu/notes-python)

# 中文 Python 笔记

> 版本:0.0.1

> 作者:李金

> 邮件:[email protected]

由于涉及著作权的问题,对基于本笔记所做的修订、改编,目前不做任何正式授权。

笔记内容仅供学习参考,未经允许,请勿用于任何商业用途。

`Github` 加载 `.ipynb` 的速度较慢,建议在 [Nbviewer](http://nbviewer.ipython.org/github/lijin-THU/notes-python/blob/master/index.ipynb) 中查看该项目。

基于本笔记的实体书:《自学Python——编程基础、科学计算及数据分析》已经出版。

京东自营链接:
https://item.jd.com/12328920.html

天猫、亚马逊、当当均有销售。

**打赏一下意思意思?**

![](payment.jpeg)

---

## 简介

大部分内容来自网络。

默认安装了 `Python 2.7`,以及相关的第三方包 `ipython`, `numpy`, `scipy`,`pandas`。

> life is short. use python.

推荐使用 [Anaconda](http://www.continuum.io/downloads),这个IDE集成了大部分常用的包。

笔记内容使用 `jupyter notebook` 来展示。

安装好 `Python` 和相应的包之后,可以在命令行下输入:

```
$ jupyter notebook
```
来进入 `jupyter notebook`。

----

## 基本环境配置

- 安装 [Anaconda](http://www.continuum.io/downloads) 或者 [Miniconda](http://conda.pydata.org/miniconda.html)

- 更新环境
```
conda update conda
conda update anaconda
```

---

## 参考

- [Enthought Training on Demand](https://training.enthought.com/)
- [Computational Statistics in Python](http://people.duke.edu/~ccc14/sta-663/index.html#rd)
- [Scipy.org](http://scipy.org/)
- [Deep Learning Tutorials](http://deeplearning.net/tutorial/)
- [High Performance Scientific Computing](http://faculty.washington.edu/rjl/uwhpsc-coursera/index.html)
- [Scipy Lectures](http://www.scipy-lectures.org/)
- [Pandas.org](http://pandas.pydata.org/pandas-docs/stable/index.html)

----

## 目录

可以在 Notebook 中打开 `generate static files.ipynb`,或者命令行中运行代码 `generate_static_files.py` 来生成静态的 HTML 文件。

---

- [01. **Python 工具**](01-python-tools)
- [01.01 Python 简介](01-python-tools/01.01-python-overview.ipynb)
- [01.02 Ipython 解释器](01-python-tools/01.02-ipython-interpreter.ipynb)
- [01.03 Ipython notebook](01-python-tools/01.03-ipython-notebook.ipynb)
- [01.04 使用 Anaconda](01-python-tools/01.04-use-anaconda.ipynb)
- [02. **Python 基础**](02-python-essentials)
- [02.01 Python 入门演示](02-python-essentials/02.01-a-tour-of-python.ipynb)
- [02.02 Python 数据类型](02-python-essentials/02.02-python-data-types.ipynb)
- [02.03 数字](02-python-essentials/02.03-numbers.ipynb)
- [02.04 字符串](02-python-essentials/02.04-strings.ipynb)
- [02.05 索引和分片](02-python-essentials/02.05-indexing-and-slicing.ipynb)
- [02.06 列表](02-python-essentials/02.06-lists.ipynb)
- [02.07 可变和不可变类型](02-python-essentials/02.07-mutable-and-immutable-data-types.ipynb)
- [02.08 元组](02-python-essentials/02.08-tuples.ipynb)
- [02.09 列表与元组的速度比较](02-python-essentials/02.09-speed-comparison-between-list-&-tuple.ipynb)
- [02.10 字典](02-python-essentials/02.10-dictionaries.ipynb)
- [02.11 集合](02-python-essentials/02.11-sets.ipynb)
- [02.12 不可变集合](02-python-essentials/02.12-frozen-sets.ipynb)
- [02.13 Python 赋值机制](02-python-essentials/02.13-how-python-assignment-works.ipynb)
- [02.14 判断语句](02-python-essentials/02.14-if-statement.ipynb)
- [02.15 循环](02-python-essentials/02.15-loops.ipynb)
- [02.16 列表推导式](02-python-essentials/02.16-list-comprehension.ipynb)
- [02.17 函数](02-python-essentials/02.17-functions.ipynb)
- [02.18 模块和包](02-python-essentials/02.18-modules-and-packages.ipynb)
- [02.19 异常](02-python-essentials/02.19-exceptions.ipynb)
- [02.20 警告](02-python-essentials/02.20-warnings.ipynb)
- [02.21 文件读写](02-python-essentials/02.21-file-IO.ipynb)
- [03. **Numpy**](03-numpy)
- [03.01 Numpy 简介](03-numpy/03.01-numpy-overview.ipynb)
- [03.02 Matplotlib 基础](03-numpy/03.02-matplotlib-basics.ipynb)
- [03.03 Numpy 数组及其索引](03-numpy/03.03-numpy-arrays.ipynb)
- [03.04 数组类型](03-numpy/03.04-array-types.ipynb)
- [03.05 数组方法](03-numpy/03.05-array-calculation-method.ipynb)
- [03.06 数组排序](03-numpy/03.06-sorting-numpy-arrays.ipynb)
- [03.07 数组形状](03-numpy/03.07-array-shapes.ipynb)
- [03.08 对角线](03-numpy/03.08-diagonals.ipynb)
- [03.09 数组与字符串的转换](03-numpy/03.09-data-to-&-from-string.ipynb)
- [03.10 数组属性方法总结](03-numpy/03.10-array-attribute-&-method-overview-.ipynb)
- [03.11 生成数组的函数](03-numpy/03.11-array-creation-functions.ipynb)
- [03.12 矩阵](03-numpy/03.12-matrix-object.ipynb)
- [03.13 一般函数](03-numpy/03.13-general-functions.ipynb)
- [03.14 向量化函数](03-numpy/03.14-vectorizing-functions.ipynb)
- [03.15 二元运算](03-numpy/03.15-binary-operators.ipynb)
- [03.16 ufunc 对象](03-numpy/03.16-universal-functions.ipynb)
- [03.17 choose 函数实现条件筛选](03-numpy/03.17-choose.ipynb)
- [03.18 数组广播机制](03-numpy/03.18-array-broadcasting.ipynb)
- [03.19 数组读写](03-numpy/03.19-reading-and-writing-arrays.ipynb)
- [03.20 结构化数组](03-numpy/03.20-structured-arrays.ipynb)
- [03.21 记录数组](03-numpy/03.21-record-arrays.ipynb)
- [03.22 内存映射](03-numpy/03.22-memory-maps.ipynb)
- [03.23 从 Matlab 到 Numpy](03-numpy/03.23-from-matlab-to-numpy.ipynb)
- [04. **Scipy**](04-scipy)
- [04.01 SCIentific PYthon 简介](04-scipy/04.01-scienticfic-python-overview.ipynb)
- [04.02 插值](04-scipy/04.02-interpolation-with-scipy.ipynb)
- [04.03 概率统计方法](04-scipy/04.03-statistics-with-scipy.ipynb)
- [04.04 曲线拟合](04-scipy/04.04-curve-fitting.ipynb)
- [04.05 最小化函数](04-scipy/04.05-minimization-in-python.ipynb)
- [04.06 积分](04-scipy/04.06-integration-in-python.ipynb)
- [04.07 解微分方程](04-scipy/04.07-ODEs.ipynb)
- [04.08 稀疏矩阵](04-scipy/04.08-sparse-matrix.ipynb)
- [04.09 线性代数](04-scipy/04.09-linear-algbra.ipynb)
- [04.10 稀疏矩阵的线性代数](04-scipy/04.10-sparse-linear-algebra.ipynb)
- [05. **Python 进阶**](05-advanced-python)
- [05.01 sys 模块简介](05-advanced-python/05.01-overview-of-the-sys-module.ipynb)
- [05.02 与操作系统进行交互:os 模块](05-advanced-python/05.02-interacting-with-the-OS---os.ipynb)
- [05.03 CSV 文件和 csv 模块](05-advanced-python/05.03-comma-separated-values.ipynb)
- [05.04 正则表达式和 re 模块](05-advanced-python/05.04-regular-expression.ipynb)
- [05.05 datetime 模块](05-advanced-python/05.05-datetime.ipynb)
- [05.06 SQL 数据库](05-advanced-python/05.06-sql-databases.ipynb)
- [05.07 对象关系映射](05-advanced-python/05.07-object-relational-mappers.ipynb)
- [05.08 函数进阶:参数传递,高阶函数,lambda 匿名函数,global 变量,递归](05-advanced-python/05.08-functions.ipynb)
- [05.09 迭代器](05-advanced-python/05.09-iterators.ipynb)
- [05.10 生成器](05-advanced-python/05.10-generators.ipynb)
- [05.11 with 语句和上下文管理器](05-advanced-python/05.11-context-managers-and-the-with-statement.ipynb)
- [05.12 修饰符](05-advanced-python/05.12-decorators.ipynb)
- [05.13 修饰符的使用](05-advanced-python/05.13-decorator-usage.ipynb)
- [05.14 operator, functools, itertools, toolz, fn, funcy 模块](05-advanced-python/05.14-the-operator-functools-itertools-toolz-fn-funcy-module.ipynb)
- [05.15 作用域](05-advanced-python/05.15-scope.ipynb)
- [05.16 动态编译](05-advanced-python/05.16-dynamic-code-execution.ipynb)
- [06. **Matplotlib**](06-matplotlib)
- [06.01 Pyplot 教程](06-matplotlib/06.01-pyplot-tutorial.ipynb)
- [06.02 使用 style 来配置 pyplot 风格](06-matplotlib/06.02-customizing-plots-with-style-sheets.ipynb)
- [06.03 处理文本(基础)](06-matplotlib/06.03-working-with-text---basic.ipynb)
- [06.04 处理文本(数学表达式)](06-matplotlib/06.04-working-with-text---math-expression.ipynb)
- [06.05 图像基础](06-matplotlib/06.05-image-tutorial.ipynb)
- [06.06 注释](06-matplotlib/06.06-annotating-axes.ipynb)
- [06.07 标签](06-matplotlib/06.07-legend.ipynb)
- [06.08 figures, subplots, axes 和 ticks 对象](06-matplotlib/06.08-figures,-subplots,-axes-and-ticks.ipynb)
- [06.09 不要迷信默认设置](06-matplotlib/06.09-do-not-trust-the-defaults.ipynb)
- [06.10 各种绘图实例](06-matplotlib/06.10-different-plots.ipynb)
- [07. **使用其他语言进行扩展**](07-interfacing-with-other-languages)
- [07.01 简介](07-interfacing-with-other-languages/07.01-introduction.ipynb)
- [07.02 Python 扩展模块](07-interfacing-with-other-languages/07.02-python-extension-modules.ipynb)
- [07.03 Cython:Cython 基础,将源代码转换成扩展模块](07-interfacing-with-other-languages/07.03-cython-part-1.ipynb)
- [07.04 Cython:Cython 语法,调用其他C库](07-interfacing-with-other-languages/07.04-cython-part-2.ipynb)
- [07.05 Cython:class 和 cdef class,使用 C++](07-interfacing-with-other-languages/07.05-cython-part-3.ipynb)
- [07.06 Cython:Typed memoryviews](07-interfacing-with-other-languages/07.06-cython-part-4.ipynb)
- [07.07 生成编译注释](07-interfacing-with-other-languages/07.07-profiling-with-annotations.ipynb)
- [07.08 ctypes](07-interfacing-with-other-languages/07.08-ctypes.ipynb)
- [08. **面向对象编程**](08-object-oriented-programming)
- [08.01 简介](08-object-oriented-programming/08.01-oop-introduction.ipynb)
- [08.02 使用 OOP 对森林火灾建模](08-object-oriented-programming/08.02-using-oop-model-a-forest-fire.ipynb)
- [08.03 什么是对象?](08-object-oriented-programming/08.03-what-is-a-object.ipynb)
- [08.04 定义 class](08-object-oriented-programming/08.04-writing-classes.ipynb)
- [08.05 特殊方法](08-object-oriented-programming/08.05-special-method.ipynb)
- [08.06 属性](08-object-oriented-programming/08.06-properties.ipynb)
- [08.07 森林火灾模拟](08-object-oriented-programming/08.07-forest-fire-simulation.ipynb)
- [08.08 继承](08-object-oriented-programming/08.08-inheritance.ipynb)
- [08.09 super() 函数](08-object-oriented-programming/08.09-super.ipynb)
- [08.10 重定义森林火灾模拟](08-object-oriented-programming/08.10-refactoring-the-forest-fire-simutation.ipynb)
- [08.11 接口](08-object-oriented-programming/08.11-interfaces.ipynb)
- [08.12 共有,私有和特殊方法和属性](08-object-oriented-programming/08.12-public-private-special-in-python.ipynb)
- [08.13 多重继承](08-object-oriented-programming/08.13-multiple-inheritance.ipynb)
- [09. **Theano 基础**](09-theano)
- [09.01 Theano 简介及其安装](09-theano/09.01-introduction-and-installation.ipynb)
- [09.02 Theano 基础](09-theano/09.02-theano-basics.ipynb)
- [09.03 Theano 在 Windows 上的配置](09-theano/09.03-gpu-on-windows.ipynb)
- [09.04 Theano 符号图结构](09-theano/09.04-graph-structures.ipynb)
- [09.05 Theano 配置和编译模式](09-theano/09.05-configuration-settings-and-compiling-modes.ipynb)
- [09.06 Theano 条件语句](09-theano/09.06-conditions-in-theano.ipynb)
- [09.07 Theano 循环:scan(详解)](09-theano/09.07-loop-with-scan.ipynb)
- [09.08 Theano 实例:线性回归](09-theano/09.08-linear-regression.ipynb)
- [09.09 Theano 实例:Logistic 回归](09-theano/09.09-logistic-regression-.ipynb)
- [09.10 Theano 实例:Softmax 回归](09-theano/09.10-softmax-on-mnist.ipynb)
- [09.11 Theano 实例:人工神经网络](09-theano/09.11-net-on-mnist.ipynb)
- [09.12 Theano 随机数流变量](09-theano/09.12-random-streams.ipynb)
- [09.13 Theano 实例:更复杂的网络](09-theano/09.13-modern-net-on-mnist.ipynb)
- [09.14 Theano 实例:卷积神经网络](09-theano/09.14-convolutional-net-on-mnist.ipynb)
- [09.15 Theano tensor 模块:基础](09-theano/09.15-tensor-basics.ipynb)
- [09.16 Theano tensor 模块:索引](09-theano/09.16-tensor-indexing.ipynb)
- [09.17 Theano tensor 模块:操作符和逐元素操作](09-theano/09.17-tensor-operator-and-elementwise-operations.ipynb)
- [09.18 Theano tensor 模块:nnet 子模块](09-theano/09.18-tensor-nnet-.ipynb)
- [09.19 Theano tensor 模块:conv 子模块](09-theano/09.19-tensor-conv.ipynb)
- [10. **有趣的第三方模块**](10-something-interesting)
- [10.01 使用 basemap 画地图](10-something-interesting/10.01-maps-using-basemap.ipynb)
- [10.02 使用 cartopy 画地图](10-something-interesting/10.02-maps-using-cartopy.ipynb)
- [10.03 探索 NBA 数据](10-something-interesting/10.03-nba-data.ipynb)
- [10.04 金庸的武侠世界](10-something-interesting/10.04-louis-cha's-kungfu-world.ipynb)
- [11. **有用的工具**](11-useful-tools)
- [11.01 pprint 模块:打印 Python 对象](11-useful-tools/11.01-pprint.ipynb)
- [11.02 pickle, cPickle 模块:序列化 Python 对象](11-useful-tools/11.02-pickle-and-cPickle.ipynb)
- [11.03 json 模块:处理 JSON 数据](11-useful-tools/11.03-json.ipynb)
- [11.04 glob 模块:文件模式匹配](11-useful-tools/11.04-glob.ipynb)
- [11.05 shutil 模块:高级文件操作](11-useful-tools/11.05-shutil.ipynb)
- [11.06 gzip, zipfile, tarfile 模块:处理压缩文件](11-useful-tools/11.06-gzip,-zipfile,-tarfile.ipynb)
- [11.07 logging 模块:记录日志](11-useful-tools/11.07-logging.ipynb)
- [11.08 string 模块:字符串处理](11-useful-tools/11.08-string.ipynb)
- [11.09 collections 模块:更多数据结构](11-useful-tools/11.09-collections.ipynb)
- [11.10 requests 模块:HTTP for Human](11-useful-tools/11.10-requests.ipynb)
- [12. **Pandas**](12-pandas)
- [12.01 十分钟上手 Pandas](12-pandas/12.01-ten-minutes-to-pandas.ipynb)
- [12.02 一维数据结构:Series](12-pandas/12.02-series-in-pandas.ipynb)
- [12.03 二维数据结构:DataFrame](12-pandas/12.03-dataframe-in-pandas.ipynb)