Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lilv98/LQAC

Beyond Knowledge Graphs: Neural Logical Reasoning with Ontologies
https://github.com/lilv98/LQAC

Last synced: 1 day ago
JSON representation

Beyond Knowledge Graphs: Neural Logical Reasoning with Ontologies

Awesome Lists containing this project

README

        

# Neural Multi-hop Logical Query Answering with Concept-level Answers

# Requirements
* python == 3.8.5
* torch == 1.8.1
* numpy == 1.19.2
* pandas == 1.0.1
* tqdm == 4.61.0
* groovy == 4.0.0
* JVM == 1.8.0_333

# Datasets

## YAGO4
### Using the pre-processed datasets
Download and unzip YAGO4.zip from [here](https://drive.google.com/drive/folders/1g3_7v-Alzh5o6_3iowt9Auq_3Z916xjL?usp=share_link), and replace

./data/YAGO4/input/

### Dataset Construction
Download the following files: [*T*](https://yago-knowledge.org/data/yago4/en/2020-02-24/yago-wd-class.nt.gz),
[*Aee*](https://yago-knowledge.org/data/yago4/en/2020-02-24/yago-wd-facts.nt.gz),
[*Aec1*](https://yago-knowledge.org/data/yago4/en/2020-02-24/yago-wd-full-types.nt.gz),
and [*Aec2*](https://yago-knowledge.org/data/yago4/en/2020-02-24/yago-wd-simple-types.nt.gz)

Unzip the files to:

./data/YAGO4/raw/

Run all cells in:

./code/ppc_YAGO4/raw2mid.ipynb
./code/ppc_YAGO4/ppc.ipynb

## DBpedia
### Using pre-processed datasets
Download and unzip DBpedia.zip from [here](https://drive.google.com/drive/folders/1g3_7v-Alzh5o6_3iowt9Auq_3Z916xjL?usp=share_link), and replace

./data/DBpedia/input/

### Dataset Construction
Download the following files: [*T*](http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.nt),
[*Aee*](http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_objects_wkd_uris_en.ttl.bz2), and
[*Aec*](http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_transitive_wkd_uris_en.ttl.bz2)

Unzip the files to:

./data/DBpedia/raw/

Run all cells in:

./code/ppc_DBpedia/raw2mid.ipynb
./code/ppc_DBpedia/ppc.ipynb

## Gene Ontology (GO)
### Using pre-processed datasets
Download and unzip GO.zip from [here](https://drive.google.com/drive/folders/1g3_7v-Alzh5o6_3iowt9Auq_3Z916xjL?usp=share_link), and replace

./data/GO/input/

### Dataset Construction

Download the raw data [here](https://bio2vec.cbrc.kaust.edu.sa/data/elembeddings/el-embeddings-data.zip) and unzip it to:

./data/GO/raw/

Generate axioms using:

groovy ./code/ppc_GO/GetOntology.groovy ./data/GO/raw/data-train/yeast-classes.owl > ./data/GO/raw/ontology.txt

Generate intermediate data using:

cd ./code/ppc_GO/ && python raw2mid.py

Run all cells in:

./code/ppc_GO/ppc.ipynb

# Run
To reproduce the main results, simply run the following commands:

python TAR.py --dataset YAGO4
python TAR.py --dataset DBpedia
python TAR.py --dataset GO