Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lilv98/LQAC
Beyond Knowledge Graphs: Neural Logical Reasoning with Ontologies
https://github.com/lilv98/LQAC
Last synced: 1 day ago
JSON representation
Beyond Knowledge Graphs: Neural Logical Reasoning with Ontologies
- Host: GitHub
- URL: https://github.com/lilv98/LQAC
- Owner: lilv98
- License: bsd-2-clause
- Created: 2023-02-01T20:27:22.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-08-01T04:09:17.000Z (over 1 year ago)
- Last Synced: 2024-10-09T10:05:54.916Z (about 1 month ago)
- Language: Jupyter Notebook
- Size: 2.11 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-logical-query - TAR
README
# Neural Multi-hop Logical Query Answering with Concept-level Answers
# Requirements
* python == 3.8.5
* torch == 1.8.1
* numpy == 1.19.2
* pandas == 1.0.1
* tqdm == 4.61.0
* groovy == 4.0.0
* JVM == 1.8.0_333# Datasets
## YAGO4
### Using the pre-processed datasets
Download and unzip YAGO4.zip from [here](https://drive.google.com/drive/folders/1g3_7v-Alzh5o6_3iowt9Auq_3Z916xjL?usp=share_link), and replace./data/YAGO4/input/
### Dataset Construction
Download the following files: [*T*](https://yago-knowledge.org/data/yago4/en/2020-02-24/yago-wd-class.nt.gz),
[*Aee*](https://yago-knowledge.org/data/yago4/en/2020-02-24/yago-wd-facts.nt.gz),
[*Aec1*](https://yago-knowledge.org/data/yago4/en/2020-02-24/yago-wd-full-types.nt.gz),
and [*Aec2*](https://yago-knowledge.org/data/yago4/en/2020-02-24/yago-wd-simple-types.nt.gz)Unzip the files to:
./data/YAGO4/raw/
Run all cells in:
./code/ppc_YAGO4/raw2mid.ipynb
./code/ppc_YAGO4/ppc.ipynb## DBpedia
### Using pre-processed datasets
Download and unzip DBpedia.zip from [here](https://drive.google.com/drive/folders/1g3_7v-Alzh5o6_3iowt9Auq_3Z916xjL?usp=share_link), and replace./data/DBpedia/input/
### Dataset Construction
Download the following files: [*T*](http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.nt),
[*Aee*](http://downloads.dbpedia.org/2016-10/core-i18n/en/mappingbased_objects_wkd_uris_en.ttl.bz2), and
[*Aec*](http://downloads.dbpedia.org/2016-10/core-i18n/en/instance_types_transitive_wkd_uris_en.ttl.bz2)Unzip the files to:
./data/DBpedia/raw/
Run all cells in:
./code/ppc_DBpedia/raw2mid.ipynb
./code/ppc_DBpedia/ppc.ipynb## Gene Ontology (GO)
### Using pre-processed datasets
Download and unzip GO.zip from [here](https://drive.google.com/drive/folders/1g3_7v-Alzh5o6_3iowt9Auq_3Z916xjL?usp=share_link), and replace./data/GO/input/
### Dataset Construction
Download the raw data [here](https://bio2vec.cbrc.kaust.edu.sa/data/elembeddings/el-embeddings-data.zip) and unzip it to:
./data/GO/raw/
Generate axioms using:
groovy ./code/ppc_GO/GetOntology.groovy ./data/GO/raw/data-train/yeast-classes.owl > ./data/GO/raw/ontology.txt
Generate intermediate data using:
cd ./code/ppc_GO/ && python raw2mid.py
Run all cells in:
./code/ppc_GO/ppc.ipynb
# Run
To reproduce the main results, simply run the following commands:python TAR.py --dataset YAGO4
python TAR.py --dataset DBpedia
python TAR.py --dataset GO