Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lindera/lindera

A multilingual morphological analysis library.
https://github.com/lindera/lindera

analyzer library morphological multilingual tokenizer

Last synced: 29 days ago
JSON representation

A multilingual morphological analysis library.

Awesome Lists containing this project

README

        

# Lindera

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Crates.io](https://img.shields.io/crates/v/lindera.svg)](https://crates.io/crates/lindera)

A morphological analysis library in Rust. This project fork from [kuromoji-rs](https://github.com/fulmicoton/kuromoji-rs).

Lindera aims to build a library which is easy to install and provides concise APIs for various Rust applications.

The following products are required to build:

- Rust >= 1.46.0

## Tokenization examples

### Basic tokenization

Put the following in Cargo.toml:

```toml
[dependencies]
lindera = { version = "0.37.0", features = ["ipadic"] }
```

This example covers the basic usage of Lindera.

It will:

- Create a tokenizer in normal mode
- Tokenize the input text
- Output the tokens

```rust
use lindera::dictionary::{load_dictionary_from_kind, DictionaryKind};
use lindera::mode::Mode;
use lindera::segmenter::Segmenter;
use lindera::tokenizer::Tokenizer;
use lindera::LinderaResult;

fn main() -> LinderaResult<()> {
let mut config_builder = TokenizerConfigBuilder::new();
config_builder.set_segmenter_dictionary_kind(&DictionaryKind::IPADIC);
config_builder.set_segmenter_mode(&Mode::Normal);

let dictionary = load_dictionary_from_kind(DictionaryKind::IPADIC)?;
let segmenter = Segmenter::new(
Mode::Normal,
dictionary,
None, // Assuming no user dictionary is provided
);

// Create a tokenizer.
let tokenizer = Tokenizer::new(segmenter);

// Tokenize a text.
let text = "関西国際空港限定トートバッグ";
let mut tokens = tokenizer.tokenize(text)?;

// Print the text and tokens.
println!("text:\t{}", text);
for token in tokens.iter_mut() {
let details = token.details().join(",");
println!("token:\t{}\t{}", token.text.as_ref(), details);
}

Ok(())
}
```

The above example can be run as follows:

```shell
% cargo run --features=ipadic --example=tokenize
```

You can see the result as follows:

```text
text: 関西国際空港限定トートバッグ
token: 関西国際空港 名詞,固有名詞,組織,*,*,*,関西国際空港,カンサイコクサイクウコウ,カンサイコクサイクーコー
token: 限定 名詞,サ変接続,*,*,*,*,限定,ゲンテイ,ゲンテイ
token: トートバッグ UNK
```

### Tokenization with user dictionary

You can give user dictionary entries along with the default system dictionary. User dictionary should be a CSV with following format.

```csv
,,
```

Put the following in Cargo.toml:

```toml
[dependencies]
lindera = { version = "0.34.0", features = ["ipadic"] }
```

For example:

```shell
% cat ./resources/simple_userdic.csv
東京スカイツリー,カスタム名詞,トウキョウスカイツリー
東武スカイツリーライン,カスタム名詞,トウブスカイツリーライン
とうきょうスカイツリー駅,カスタム名詞,トウキョウスカイツリーエキ
```

With an user dictionary, `Tokenizer` will be created as follows:

```rust
use std::path::PathBuf;

use lindera::dictionary::{
load_dictionary_from_kind, load_user_dictionary_from_csv, DictionaryKind,
};
use lindera::mode::Mode;
use lindera::segmenter::Segmenter;
use lindera::tokenizer::Tokenizer;
use lindera::LinderaResult;

fn main() -> LinderaResult<()> {
let user_dict_path = PathBuf::from(env!("CARGO_MANIFEST_DIR"))
.join("../resources")
.join("ipadic_simple_userdic.csv");

let dictionary = load_dictionary_from_kind(DictionaryKind::IPADIC)?;
let user_dictionary =
load_user_dictionary_from_csv(DictionaryKind::IPADIC, PathBuf::from("./resources/ipadic_simple_userdic.csv").as_path())?;
let segmenter = Segmenter::new(
Mode::Normal,
dictionary,
Some(user_dictionary), // Assuming no user dictionary is provided
);

// Create a tokenizer.
let tokenizer = Tokenizer::new(segmenter);

// Tokenize a text.
let text = "東京スカイツリーの最寄り駅はとうきょうスカイツリー駅です";
let mut tokens = tokenizer.tokenize(text)?;

// Print the text and tokens.
println!("text:\t{}", text);
for token in tokens.iter_mut() {
let details = token.details().join(",");
println!("token:\t{}\t{}", token.text.as_ref(), details);
}

Ok(())
}
```

The above example can be by `cargo run --example`:

```shell
% cargo run --features=ipadic --example=tokenize_with_user_dict
text: 東京スカイツリーの最寄り駅はとうきょうスカイツリー駅です
token: 東京スカイツリー カスタム名詞,*,*,*,*,*,東京スカイツリー,トウキョウスカイツリー,*
token: の 助詞,連体化,*,*,*,*,の,ノ,ノ
token: 最寄り駅 名詞,一般,*,*,*,*,最寄り駅,モヨリエキ,モヨリエキ
token: は 助詞,係助詞,*,*,*,*,は,ハ,ワ
token: とうきょうスカイツリー駅 カスタム名詞,*,*,*,*,*,とうきょうスカイツリー駅,トウキョウスカイツリーエキ,*
token: です 助動詞,*,*,*,特殊・デス,基本形,です,デス,デス
```

### Tokenize with filters

Put the following in Cargo.toml:

```toml
[dependencies]
lindera = { version = "0.34.0", features = ["ipadic"] }
```

This example covers the basic usage of Lindera Analysis Framework.

It will:

- Apply character filter for Unicode normalization (NFKC)
- Tokenize the input text with IPADIC
- Apply token filters for removing stop tags (Part-of-speech) and Japanese Katakana stem filter

```rust
use std::collections::HashSet;

use lindera::character_filter::japanese_iteration_mark::JapaneseIterationMarkCharacterFilter;
use lindera::character_filter::unicode_normalize::{
UnicodeNormalizeCharacterFilter, UnicodeNormalizeKind,
};
use lindera::character_filter::BoxCharacterFilter;
use lindera::dictionary::{load_dictionary_from_kind, DictionaryKind};
use lindera::mode::Mode;
use lindera::segmenter::Segmenter;
use lindera::token_filter::japanese_compound_word::JapaneseCompoundWordTokenFilter;
use lindera::token_filter::japanese_number::JapaneseNumberTokenFilter;
use lindera::token_filter::japanese_stop_tags::JapaneseStopTagsTokenFilter;
use lindera::token_filter::BoxTokenFilter;
use lindera::tokenizer::Tokenizer;
use lindera::LinderaResult;

fn main() -> LinderaResult<()> {
let dictionary = load_dictionary_from_kind(DictionaryKind::IPADIC)?;
let segmenter = Segmenter::new(
Mode::Normal,
dictionary,
None, // Assuming no user dictionary is provided
);

let unicode_normalize_char_filter =
UnicodeNormalizeCharacterFilter::new(UnicodeNormalizeKind::NFKC);

let japanese_iterration_mark_char_filter =
JapaneseIterationMarkCharacterFilter::new(true, true);

let japanese_compound_word_token_filter = JapaneseCompoundWordTokenFilter::new(
DictionaryKind::IPADIC,
vec!["名詞,数".to_string(), "名詞,接尾,助数詞".to_string()]
.into_iter()
.collect(),
Some("複合語".to_string()),
);

let japanese_number_token_filter =
JapaneseNumberTokenFilter::new(Some(vec!["名詞,数".to_string()].into_iter().collect()));

let japanese_stop_tags_token_filter = JapaneseStopTagsTokenFilter::new(
vec![
"接続詞".to_string(),
"助詞".to_string(),
"助詞,格助詞".to_string(),
"助詞,格助詞,一般".to_string(),
"助詞,格助詞,引用".to_string(),
"助詞,格助詞,連語".to_string(),
"助詞,係助詞".to_string(),
"助詞,副助詞".to_string(),
"助詞,間投助詞".to_string(),
"助詞,並立助詞".to_string(),
"助詞,終助詞".to_string(),
"助詞,副助詞/並立助詞/終助詞".to_string(),
"助詞,連体化".to_string(),
"助詞,副詞化".to_string(),
"助詞,特殊".to_string(),
"助動詞".to_string(),
"記号".to_string(),
"記号,一般".to_string(),
"記号,読点".to_string(),
"記号,句点".to_string(),
"記号,空白".to_string(),
"記号,括弧閉".to_string(),
"その他,間投".to_string(),
"フィラー".to_string(),
"非言語音".to_string(),
]
.into_iter()
.collect(),
);

// Create a tokenizer.
let mut tokenizer = Tokenizer::new(segmenter);

tokenizer
.append_character_filter(BoxCharacterFilter::from(unicode_normalize_char_filter))
.append_character_filter(BoxCharacterFilter::from(
japanese_iterration_mark_char_filter,
))
.append_token_filter(BoxTokenFilter::from(japanese_compound_word_token_filter))
.append_token_filter(BoxTokenFilter::from(japanese_number_token_filter))
.append_token_filter(BoxTokenFilter::from(japanese_stop_tags_token_filter));

// Tokenize a text.
let text = "Linderaは形態素解析エンジンです。ユーザー辞書も利用可能です。";
let tokens = tokenizer.tokenize(text)?;

// Print the text and tokens.
println!("text: {}", text);
for token in tokens {
println!(
"token: {:?}, start: {:?}, end: {:?}, details: {:?}",
token.text, token.byte_start, token.byte_end, token.details
);
}

Ok(())
}
```

The above example can be run as follows:

```shell
% cargo run --features=ipadic --example=tokenize_with_filters
```

You can see the result as follows:

```text
text: Linderaは形態素解析エンジンです。ユーザー辞書も利用可能です。
token: "Lindera", start: 0, end: 21, details: Some(["UNK"])
token: "形態素", start: 24, end: 33, details: Some(["名詞", "一般", "*", "*", "*", "*", "形態素", "ケイタイソ", "ケイタイソ"])
token: "解析", start: 33, end: 39, details: Some(["名詞", "サ変接続", "*", "*", "*", "*", "解析", "カイセキ", "カイセキ"])
token: "エンジン", start: 39, end: 54, details: Some(["名詞", "一般", "*", "*", "*", "*", "エンジン", "エンジン", "エンジン"])
token: "ユーザー", start: 63, end: 75, details: Some(["名詞", "一般", "*", "*", "*", "*", "ユーザー", "ユーザー", "ユーザー"])
token: "辞書", start: 75, end: 81, details: Some(["名詞", "一般", "*", "*", "*", "*", "辞書", "ジショ", "ジショ"])
token: "利用", start: 84, end: 90, details: Some(["名詞", "サ変接続", "*", "*", "*", "*", "利用", "リヨウ", "リヨー"])
token: "可能", start: 90, end: 96, details: Some(["名詞", "形容動詞語幹", "*", "*", "*", "*", "可能", "カノウ", "カノー"])
```

## Configuration file

Lindera is able to read YAML format configuration files.
Specify the path to the following file in the environment variable LINDERA_CONFIG_PATH. You can use it easily without having to code the behavior of the tokenizer in Rust code.

```yaml
segmenter:
mode: "normal"
dictionary:
kind: "ipadic"
user_dictionary:
path: "./resources/ipadic_simple.csv"
kind: "ipadic"

character_filters:
- kind: "unicode_normalize"
args:
kind: "nfkc"
- kind: "japanese_iteration_mark"
args:
normalize_kanji: true
normalize_kana: true
- kind: mapping
args:
mapping:
リンデラ: Lindera

token_filters:
- kind: "japanese_compound_word"
args:
kind: "ipadic"
tags:
- "名詞,数"
- "名詞,接尾,助数詞"
new_tag: "名詞,数"
- kind: "japanese_number"
args:
tags:
- "名詞,数"
- kind: "japanese_stop_tags"
args:
tags:
- "接続詞"
- "助詞"
- "助詞,格助詞"
- "助詞,格助詞,一般"
- "助詞,格助詞,引用"
- "助詞,格助詞,連語"
- "助詞,係助詞"
- "助詞,副助詞"
- "助詞,間投助詞"
- "助詞,並立助詞"
- "助詞,終助詞"
- "助詞,副助詞/並立助詞/終助詞"
- "助詞,連体化"
- "助詞,副詞化"
- "助詞,特殊"
- "助動詞"
- "記号"
- "記号,一般"
- "記号,読点"
- "記号,句点"
- "記号,空白"
- "記号,括弧閉"
- "その他,間投"
- "フィラー"
- "非言語音"
- kind: "japanese_katakana_stem"
args:
min: 3
- kind: "remove_diacritical_mark"
args:
japanese: false
```

```shell
% export LINDERA_CONFIG_PATH=./resources/lindera.yml
```

```rust
use lindera::tokenizer::TokenizerBuilder;
use lindera::LinderaResult;

fn main() -> LinderaResult<()> {
// Creates a new `TokenizerConfigBuilder` instance.
// If the `LINDERA_CONFIG_PATH` environment variable is set, it will attempt to load the initial settings from the specified path.
let builder = TokenizerBuilder::from_file(PathBuf::from("./resources/lindera.yml").as_path())?;

let tokenizer = builder.build()?;

// Tokenize a text.
let text = "関西国際空港限定トートバッグ";
let mut tokens = tokenizer.tokenize(text)?;

// Print the text and tokens.
println!("text:\t{}", text);
for token in tokens.iter_mut() {
let details = token.details().join(",");
println!("token:\t{}\t{}", token.text.as_ref(), details);
}

Ok(())
}
```

## API reference

The API reference is available. Please see following URL:

- [lindera](https://docs.rs/lindera)