An open API service indexing awesome lists of open source software.

https://github.com/linesd/pilco-disentangling-uncertainty

Disentangling Sources of Uncertainty for Active Exploration (Reinforcement Learning)
https://github.com/linesd/pilco-disentangling-uncertainty

cart-double-pendulum cart-pole control control-systems disentangling-sources dynamical-systems gaussian-processes learning-control machine-learning monte-carlo-samples pendulum pilco probabilistic-inference reinforcement-learning reinforcement-learning-algorithms uncertainty

Last synced: 3 months ago
JSON representation

Disentangling Sources of Uncertainty for Active Exploration (Reinforcement Learning)

Awesome Lists containing this project

README

          

# PILCO - disentangling sources of uncertainty

This repository contains the orgininal PILCO MATLAB code (see pilco_readme.txt and license) with added functionality that disentangles the sources of uncertainty in the cost function for a given policy by Monte Carlo sampling.

Uncertainty analysis implemented for the following scenarios:

* Pendulum
* Cart-Pole
* Pendubot
* Cart-Double-Pendulum

## Run

Scenarios can be run from from the scenarios folder:

* pendulum_learn.m
* cartPole_learn.m
* pendubot_learn.m
* cartDouble_learn.m

Set the number of Monte Carlo samples in the scenario settings files.

## Plot

Plots of the Monte Carlo samples and uncertainty decomposition can be made for each environment from the scripts in the uncertainty_plots folder.

## Output

example plots for the **pendubot scenario**:
![](imgs/pen_MC_rollout_Ep_40_Dim_3.png)
![](imgs/pen_uncertainty.png)
![](imgs/pen_uncertainty_norm.png)

example plots for the **cartDoublePendulum scenario**:
![](imgs/cdp_MC_rollout_Ep_80_Dim_6.png)
![](imgs/cdp_uncertainty.png)
![](imgs/cdp_uncertainty_normalised.png)