Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/linto-ai/sfeatpy
Library to extract MFCC features from audio signal
https://github.com/linto-ai/sfeatpy
feature-extraction mfcc mfcc-features python3 speech-processing
Last synced: 6 days ago
JSON representation
Library to extract MFCC features from audio signal
- Host: GitHub
- URL: https://github.com/linto-ai/sfeatpy
- Owner: linto-ai
- License: agpl-3.0
- Created: 2021-02-16T13:28:50.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2021-02-16T14:36:23.000Z (almost 4 years ago)
- Last Synced: 2024-12-07T20:46:02.513Z (26 days ago)
- Topics: feature-extraction, mfcc, mfcc-features, python3, speech-processing
- Language: Python
- Homepage:
- Size: 18.6 KB
- Stars: 2
- Watchers: 5
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
Awesome Lists containing this project
README
# SFeatPy
![version](https://img.shields.io/github/manifest-json/v/linto-ai/sfeatpy) [![pypi version](https://img.shields.io/pypi/v/sfeatpy)](https://pypi.org/project/sfeatpy/)
## IntroductionPython library to extract MFCC parameters.
## Installation
### pypi
```bash
pip install sfeatpy
```### From source
```bash
git clone https://github.com/linto-ai/sfeatpy.git
cd sfeatpy
./setup.py install
```## Usage
```python
import sfeatpy
import numpy as nprd_signal = np.random.random(16000)
res = sfeatpy.mfcc(rd_signal, # audio signal
sample_rate, # sample_rate -- Audio sampling rate (default 16000)
window_length, # window_length -- window size in sample (default 1024)
window_stride, # window_stride -- window stride in sample (default 512)
fft_size, # fft_size -- fft number of points (default 1024)
min_freq, # min_freq -- minimum frequency in hertz (default 20)
max_freq, # max_freq -- maximum frequency in hertz (default 7000)
num_filter, # num_filter -- number of MEL bins (default 40)
num_coef, # num_coef -- number of output coeficients (default 20)
windowFun, # windowFun -- window function: 0- None | 1- hamming (default 0)
preEmp, # preEmp -- preEmphasis factor ignored on None (default 0.97)
keep_first_value # keep_first_value -- if False discard first MFCC value (default False)
)
res.shape
> (30,20)```
## Limitations
* Values are not checked to keep the processing efficient.
* Works only on Mono-channel signal## Licence
This project is under aGPLv3 licence, feel free to use and modify the code under those terms.
See LICENCE## Used libraries
* [Numpy](http://www.numpy.org/)
* [Scipy](https://github.com/tensorflow/tensorflow)