https://github.com/linux-cpp-lisp/opt_einsum_fx
Einsum optimization using opt_einsum and PyTorch FX graph rewriting
https://github.com/linux-cpp-lisp/opt_einsum_fx
einsum optimization pytorch pytorch-fx
Last synced: 2 months ago
JSON representation
Einsum optimization using opt_einsum and PyTorch FX graph rewriting
- Host: GitHub
- URL: https://github.com/linux-cpp-lisp/opt_einsum_fx
- Owner: Linux-cpp-lisp
- License: mit
- Created: 2021-03-05T17:23:24.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2022-03-17T21:39:36.000Z (over 3 years ago)
- Last Synced: 2024-12-01T08:05:05.722Z (10 months ago)
- Topics: einsum, optimization, pytorch, pytorch-fx
- Language: Python
- Homepage:
- Size: 190 KB
- Stars: 19
- Watchers: 4
- Forks: 5
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
# opt_einsum_fx
[](https://opt-einsum-fx.readthedocs.io/en/latest/?badge=latest)
Optimizing einsums and functions involving them using [`opt_einsum`](https://optimized-einsum.readthedocs.io/en/stable/) and PyTorch [FX](https://pytorch.org/docs/stable/fx.html) compute graphs.
Issues, questions, PRs, and any thoughts about further optimizing these kinds of operations are welcome!
For more information please see [the docs](https://opt-einsum-fx.readthedocs.io/en/stable/).
## Installation
### PyPI
The latest release can be installed from PyPI:
```bash
$ pip install opt_einsum_fx
```### Source
To get the latest code, run:
```bash
$ git clone https://github.com/Linux-cpp-lisp/opt_einsum_fx.git
```
and install it by running
```bash
$ cd opt_einsum_fx/
$ pip install .
```You can run the tests with
```bash
$ pytest tests/
```## Minimal example
```python
import torch
import torch.fx
import opt_einsum_fxdef einmatvecmul(a, b, vec):
"""Batched matrix-matrix-vector product using einsum"""
return torch.einsum("zij,zjk,zk->zi", a, b, vec)graph_mod = torch.fx.symbolic_trace(einmatvecmul)
print("Original code:\n", graph_mod.code)
graph_opt = opt_einsum_fx.optimize_einsums_full(
model=graph_mod,
example_inputs=(
torch.randn(7, 4, 5),
torch.randn(7, 5, 3),
torch.randn(7, 3)
)
)
print("Optimized code:\n", graph_opt.code)
```
outputs
```
Original code:
import torch
def forward(self, a, b, vec):
einsum_1 = torch.functional.einsum('zij,zjk,zk->zi', a, b, vec); a = b = vec = None
return einsum_1Optimized code:
import torch
def forward(self, a, b, vec):
einsum_1 = torch.functional.einsum('cb,cab->ca', vec, b); vec = b = None
einsum_2 = torch.functional.einsum('cb,cab->ca', einsum_1, a); einsum_1 = a = None
return einsum_2
```We can measure the performance improvement (this is on a CPU):
```python
from torch.utils.benchmark import Timerbatch = 1000
a, b, vec = torch.randn(batch, 4, 5), torch.randn(batch, 5, 8), torch.randn(batch, 8)g = {"f": graph_mod, "a": a, "b": b, "vec": vec}
t_orig = Timer("f(a, b, vec)", globals=g)
print(t_orig.timeit(10_000))g["f"] = graph_opt
t_opt = Timer("f(a, b, vec)", globals=g)
print(t_opt.timeit(10_000))
```
gives ~2x improvement:
```
f(a, b, vec)
276.58 us
1 measurement, 10000 runs , 1 threadf(a, b, vec)
118.84 us
1 measurement, 10000 runs , 1 thread
```
Depending on your function and dimensions you may see even larger improvements.## License
`opt_einsum_fx` is distributed under an [MIT license](LICENSE).