Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lipku/metahuman-stream
Real time interactive streaming digital human
https://github.com/lipku/metahuman-stream
aigc digihuman digital-human er-nerf lip-sync musetalk nerf realtime streaming talking-head virtualhumans wav2lip
Last synced: about 1 month ago
JSON representation
Real time interactive streaming digital human
- Host: GitHub
- URL: https://github.com/lipku/metahuman-stream
- Owner: lipku
- License: apache-2.0
- Created: 2023-12-19T01:32:46.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-09-21T02:55:40.000Z (about 2 months ago)
- Last Synced: 2024-09-26T15:10:16.802Z (about 1 month ago)
- Topics: aigc, digihuman, digital-human, er-nerf, lip-sync, musetalk, nerf, realtime, streaming, talking-head, virtualhumans, wav2lip
- Language: Python
- Homepage: https://livetalking-doc.readthedocs.io/
- Size: 44.4 MB
- Stars: 3,537
- Watchers: 43
- Forks: 497
- Open Issues: 174
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - lipku/metahuman-stream
- AiTreasureBox - lipku/metahuman-stream - 11-02_3773_1](https://img.shields.io/github/stars/lipku/metahuman-stream.svg)|Real time interactive streaming digital human| (Repos)
README
Real time interactive streaming digital human, realize audio video synchronous dialogue. It can basically achieve commercial effects.
实时交互流式数字人,实现音视频同步对话。基本可以达到商用效果[ernerf效果](https://www.bilibili.com/video/BV1PM4m1y7Q2/) [musetalk效果](https://www.bilibili.com/video/BV1gm421N7vQ/) [wav2lip效果](https://www.bilibili.com/video/BV1Bw4m1e74P/)
## Features
1. 支持多种数字人模型: ernerf、musetalk、wav2lip
2. 支持声音克隆
3. 支持数字人说话被打断
4. 支持全身视频拼接
5. 支持rtmp和webrtc
6. 支持视频编排:不说话时播放自定义视频## 1. Installation
Tested on Ubuntu 20.04, Python3.10, Pytorch 1.12 and CUDA 11.3
### 1.1 Install dependency
```bash
conda create -n nerfstream python=3.10
conda activate nerfstream
conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt
#如果不训练ernerf模型,不需要安装下面的库
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
pip install tensorflow-gpu==2.8.0
pip install --upgrade "protobuf<=3.20.1"
```
如果用pytorch2.1,torchvision用0.16(可以去torchvision官网根据pytorch版本找匹配的),cudatoolkit可以不用装
安装常见问题[FAQ](/assets/faq.md)
linux cuda环境搭建可以参考这篇文章 https://zhuanlan.zhihu.com/p/674972886## 2. Quick Start
默认采用ernerf模型,webrtc推流到srs
### 2.1 运行srs
```
export CANDIDATE='<服务器外网ip>'
docker run --rm --env CANDIDATE=$CANDIDATE \
-p 1935:1935 -p 8080:8080 -p 1985:1985 -p 8000:8000/udp \
registry.cn-hangzhou.aliyuncs.com/ossrs/srs:5 \
objs/srs -c conf/rtc.conf
```### 2.2 启动数字人:
```python
python app.py
```如果访问不了huggingface,在运行前
```
export HF_ENDPOINT=https://hf-mirror.com
```用浏览器打开http://serverip:8010/rtcpushapi.html, 在文本框输入任意文字,提交。数字人播报该段文字
备注:服务端需要开放端口 tcp:8000,8010,1985; udp:8000## 3. More Usage
使用说明:
## 4. Docker Run
不需要前面的安装,直接运行。
```
docker run --gpus all -it --network=host --rm registry.cn-beijing.aliyuncs.com/codewithgpu2/lipku-metahuman-stream:vjo1Y6NJ3N
```
代码在/root/metahuman-stream,先git pull拉一下最新代码,然后执行命令同第2、3步提供如下镜像
- autodl镜像:
[autodl教程](autodl/README.md)## 5. 性能分析
1. 帧率
在Tesla T4显卡上测试整体fps为18左右,如果去掉音视频编码推流,帧率在20左右。用4090显卡可以达到40多帧/秒。
2. 延时
整体延时3s左右
(1)tts延时1.7s左右,目前用的edgetts,需要将每句话转完后一次性输入,可以优化tts改成流式输入
(2)wav2vec延时0.4s,需要缓存18帧音频做计算
(3)srs转发延时,设置srs服务器减少缓冲延时。具体配置可看 https://ossrs.net/lts/zh-cn/docs/v5/doc/low-latency## 6. TODO
- [x] 添加chatgpt实现数字人对话
- [x] 声音克隆
- [x] 数字人静音时用一段视频代替
- [x] MuseTalk
- [x] Wav2Lip
- [ ] TalkingGaussian---
如果本项目对你有帮助,帮忙点个star。也欢迎感兴趣的朋友一起来完善该项目.
* 知识星球: https://t.zsxq.com/7NMyO 沉淀高质量常见问题、最佳实践经验、问题解答
* 微信公众号:数字人技术
![](https://mmbiz.qpic.cn/sz_mmbiz_jpg/l3ZibgueFiaeyfaiaLZGuMGQXnhLWxibpJUS2gfs8Dje6JuMY8zu2tVyU9n8Zx1yaNncvKHBMibX0ocehoITy5qQEZg/640?wxfrom=12&tp=wxpic&usePicPrefetch=1&wx_fmt=jpeg&from=appmsg)