Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/liuruoze/easypr
(CGCSTCD'2017) An easy, flexible, and accurate plate recognition project for Chinese licenses in unconstrained situations. CGCSTCD = China Graduate Contest on Smart-city Technology and Creative Design
https://github.com/liuruoze/easypr
artificial-intelligence artificial-neural-networks chinese-characters computer-vision datasets machine-learning opencv opencv3 plate-recognition supervised-learning support-vector-machines unconstrained-situation
Last synced: 7 days ago
JSON representation
(CGCSTCD'2017) An easy, flexible, and accurate plate recognition project for Chinese licenses in unconstrained situations. CGCSTCD = China Graduate Contest on Smart-city Technology and Creative Design
- Host: GitHub
- URL: https://github.com/liuruoze/easypr
- Owner: liuruoze
- License: apache-2.0
- Created: 2014-09-19T11:46:04.000Z (over 10 years ago)
- Default Branch: master
- Last Pushed: 2024-06-04T13:10:44.000Z (8 months ago)
- Last Synced: 2024-12-22T21:14:36.865Z (29 days ago)
- Topics: artificial-intelligence, artificial-neural-networks, chinese-characters, computer-vision, datasets, machine-learning, opencv, opencv3, plate-recognition, supervised-learning, support-vector-machines, unconstrained-situation
- Language: C++
- Homepage:
- Size: 186 MB
- Stars: 6,369
- Watchers: 522
- Forks: 2,508
- Open Issues: 86
-
Metadata Files:
- Readme: README.md
- Changelog: ChangeLog.md
- License: LICENSE
Awesome Lists containing this project
README
# EasyPR
EasyPR是一个开源的中文车牌识别系统,其目标是成为一个简单、高效、准确的非限制场景(unconstrained situation)下的车牌识别库。
相比于其他的车牌识别系统,EasyPR有如下特点:
* 它基于openCV这个开源库。这意味着你可以获取全部源代码,并且移植到opencv支持的所有平台。
* 它能够识别中文。例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。
* 它的识别率较高。图片清晰情况下,车牌检测与字符识别可以达到80%以上的精度。### 更新
本次更新版本是1.6正式版本,主要有以下几点更新:
1. 修正了多项readme的文本提示。
2. 增加了C#调用EasyPR的一个项目的链接,感谢 @zhang-can 同学。
**注意**
1. 对于Opencv3.2或以上版本,如果碰到编译问题,例如“ANN_MLP”相关的错误,尝试将config.h中将#define CV_VERSION_THREE_ZERO改为#define CV_VERSION_THREE_TWO试试.
2. linux系统推荐使用Opencv3.2以上版本。3.2以下的版本例如3.0和3.1在识别时可能会出现车牌识别结果为空的情况。稳妥起见,建议都升级到最新的3.2版本。Windows版本没有这个问题。
## 待做的工作
- [ ] 完成一个CNN框架
- [ ] 替换ANN为CNN
- [ ] 增加新能源车的识别(待定)
- [ ] 增加两行车牌的识别(待定)### 跨平台
目前除了windows平台以外,还有以下其他平台的EasyPR版本。一些平台的版本可能会暂时落后于主平台。
现在有一个无需配置opencv的1.5版本的[懒人版](http://git.oschina.net/easypr/EasyPR/attach_files)。仅仅支持vs2013,也只能在debug和x86下运行,其他情况的话还是得配置opencv。感谢范文捷同学的帮助。页面里的两个文件都要下载,下载后用[7zip](http://www.7-zip.org/)解压。
|版本 | 开发者 | 版本 | 地址
|------|-------|-------|-------
| C# | zhang-can | 1.5 | [zhang-can/EasyPR-DLL-CSharp](https://github.com/zhang-can/EasyPR-DLL-CSharp)
| android | goldriver | 1.4 | [linuxxx/EasyPR_Android](https://github.com/linuxxx/EasyPR_Android)
| linux | Micooz | 1.6 | 已跟EasyPR整合
| ios | zhoushiwei | 1.3 | [zhoushiwei/EasyPR-iOS](https://github.com/zhoushiwei/EasyPR-iOS)
| mac | zhoushiwei,Micooz | 1.6 | 已跟EasyPR整合
| java | fan-wenjie | 1.2 | [fan-wenjie/EasyPR-Java](https://github.com/fan-wenjie/EasyPR-Java)
| 懒人版 | fan-wenjie | 1.5 | [git/oschina](http://git.oschina.net/easypr/EasyPR/attach_files)### 兼容性
当前EasyPR是基于opencv3.0版本开发的,3.0及以上的版本应该可以兼容,以前的版本可能会存在不兼容的现象。
### 例子
假设我们有如下的原始图片,需要识别出中间的车牌字符与颜色:
![EasyPR 原始图片](resources/doc/res/plate_locate.jpg)
经过EasyPR的第一步处理车牌检测(PlateDetect)以后,我们获得了原始图片中仅包含车牌的图块:
![EasyPR 车牌](resources/doc/res/blue_plate.jpg)
接着,我们对图块进行OCR过程,在EasyPR中,叫做字符识别(CharsRecognize)。我们得到了一个包含车牌颜色与字符的字符串:
“蓝牌:苏EUK722”
### 示例
EasyPR的调用非常简单,下面是一段示例代码:
```c++
CPlateRecognize pr;
pr.setResultShow(false);
pr.setDetectType(PR_DETECT_CMSER);
vector plateVec;
Mat src = imread(filepath);
int result = pr.plateRecognize(src, plateVec);
```我们首先创建一个CPlateRecognize的对象pr,接着设置pr的属性。
```c++
pr.setResultShow(false);
```这句话设置EasyPR是否打开结果展示窗口,如下图。设置为true就是打开,否则就是关闭。在需要观看定位结果时,建议打开,快速运行时关闭。
![EasyPR 输出窗口](resources/doc/res/window.png)
```c++
pr.setDetectType(PR_DETECT_CMSER);
```这句话设置EasyPR采用的车牌定位算法。CMER代表文字定位方法,SOBEL和COLOR分别代表边缘和颜色定位方法。可以通过"|"符号结合。
```c++
pr.setDetectType(PR_DETECT_COLOR | PR_DETECT_SOBEL);
```除此之外,还可以有一些其他的属性值设置:
```c++
pr.setLifemode(true);
```这句话设置开启生活模式,这个属性在定位方法为SOBEL时可以发挥作用,能增大搜索范围,提高鲁棒性。
```c++
pr.setMaxPlates(4);
```这句话设置EasyPR最多查找多少个车牌。当一副图中有大于n个车牌时,EasyPR最终只会输出可能性最高的n个。
下面来看pr的方法。plateRecognize()这个方法有两个参数,第一个代表输入图像,第二个代表输出的车牌CPlate集合。
```c++
vector plateVec;
Mat src = imread(filepath);
int result = pr.plateRecognize(src, plateVec);
```当返回结果result为0时,代表识别成功,否则失败。
CPlate类包含了车牌的各种信息,其中重要的如下:
```c++
CPlate plate = plateVec.at(i);
Mat plateMat = plate.getPlateMat();
RotatedRect rrect = plate.getPlatePos();
string license = plate.getPlateStr();
```plateMat代表车牌图像,rrect代表车牌的可旋转矩形位置,license代表车牌字符串,例如“蓝牌:苏EUK722”。
这里说下如何去阅读如下图的识别结果。
![EasyPR DetectResults](resources/doc/res/one_image_detect.jpg)
第1行代表的是图片的文件名。
第2行代表GroundTruth车牌,用后缀(g)表示。第3行代表EasyPR检测车牌,用后缀(d)表示。两者形成一个配对,第4行代表两者的字符差距。
下面同上。本图片中有3个车牌,所有共有三个配对。最后的Recall等指标代表的是整幅图片的定位评价,考虑了三个配对的结果。
有时检测车牌的部分会用“无车牌”与“No string”替代。“无车牌”代表“定位不成功”,“No string”代表“定位成功但字符分割失败”。
### 版权
EasyPR的源代码与训练数据遵循Apache v2.0协议开源。
EasyPR的resources/image/general_test文件夹下的图片数据遵循[GDSL协议](image/GDSL.txt)(通用数据共享协议)进行开放。
请确保在使用前了解以上协议的内容。
### 目录结构
以下表格是本工程中所有目录的解释:
|目录 | 解释
|------|----------
| src | 所有源文件
| include | 所有头文件
| test | 测试程序
| model | 机器学习的模型
| resources/text | 中文字符映射表
| resources/train | 训练数据与说明
| resources/image | 测试用的图片
| resources/doc | 相关文档
| tmp | 训练数据读取目录,需要自建以下表格是resources/image目录中子目录的解释:
|目录 | 解释
|------|----------
| general_test | GDTS(通用数据测试集)
| native_test | NDTS(本地数据测试集)
| tmp | Debug模式下EasyPR输出中间图片的目录,需要自建以下表格是src目录中子目录的解释:
|目录 | 解释
|------|----------
| core | 核心功能
| preprocess | SVM预处理
| train | 训练目录,存放模型训练的代码
| util | 辅助功能以下表格是src目录下一些核心文件的解释与关系:
|文件 | 解释
|------|----------
| plate_locate | 车牌定位
| plate_judge | 车牌判断
| plate_detect | 车牌检测,是车牌定位与车牌判断功能的组合
| chars_segment | 字符分割
| chars_identify | 字符鉴别
| chars_recognise | 字符识别,是字符分割与字符鉴别功能的组合
| plate_recognize | 车牌识别,是车牌检测与字符识别的共有子类
| feature | 特征提取回调函数
| plate | 车牌抽象
| core_func.h | 共有的一些函数以下表格是test目录下文件的解释:
|文件 | 解释
|------|----------
| main.cpp | 主命令行窗口
| accuracy.hpp | 批量测试
| chars.hpp | 字符识别相关
| plate.hpp | 车牌识别相关以下表格是train目录下文件的解释:
|文件 | 解释
|------|----------
| ann_train.cpp | 训练二值化字符
| annCh_train.hpp | 训练中文灰度字符
| svm_train.hpp | 训练车牌判断
| create_data.hpp | 生成合成数据### 使用
请参考[这里](Usage.md)
### 获取帮助
详细的开发与教程请见[介绍与开发教程](http://www.cnblogs.com/subconscious/p/3979988.html)。
如果你在使用过程中遇到任何问题,请在[这里](https://github.com/liuruoze/EasyPR/issues)告诉我们。
EasyPR讨论QQ群号是:一群:366392603,二群:583022188,三群:637614031,四群:548362608,加前请注明EasyPR学习讨论。
### Contributors
* liuruoze:1.0-1.2,1.5版作者
* 海豚嘎嘎(车主之家):1.3版算法贡献者,提升了车牌定位与字符识别的准确率
* Micooz:1.3-1.4版架构重构,linux与mac支持,opencv3.0支持,utf-8编码转换
* jsxyhelu:deface版本一
* zhoushiwei:deface版本二
* ahccom:新的plateLocate函数
* 阿水:1.3版整合,数据标注等工作
* fan-wenjie:1.5版opencv整合版提供者
* Free:1.6版数据提供者
### 鸣谢
taotao1233,邱锦山,唐大侠,jsxyhelu,如果有一天(zhoushiwei),学习奋斗,袁承志,圣城小石匠,goldriver,Micooz,梦里时光,Rain Wang,任薛纪,ahccom,星夜落尘,海豚嘎嘎(车主之家),刘超,Free大神,以及所有对EasyPR贡献数据的热心同学。