Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/liux0614/yolo_nano
Unofficial implementation of yolo nano
https://github.com/liux0614/yolo_nano
Last synced: 3 months ago
JSON representation
Unofficial implementation of yolo nano
- Host: GitHub
- URL: https://github.com/liux0614/yolo_nano
- Owner: liux0614
- License: mit
- Created: 2019-10-15T20:46:33.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-10-03T21:38:03.000Z (over 1 year ago)
- Last Synced: 2024-08-02T01:18:27.149Z (7 months ago)
- Language: Python
- Homepage:
- Size: 447 KB
- Stars: 254
- Watchers: 12
- Forks: 72
- Open Issues: 22
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-yolo-object-detection - liux0614/yolo_nano
- awesome-yolo-object-detection - liux0614/yolo_nano
README
# Introduction
YOLO nano is from this [paper](https://arxiv.org/abs/1910.01271).
# TODO
Since I'm too busy at the end of the semester, I will continue working on this project after my exams.
- [x] Finish a draft version of implementation
- [x] Add README
- [x] Add checkpoint support
- [x] Add COCO dataset support (Code still needs cleaning. I'm working on it.)
- [x] Add _multi scale_ and _horizontal flip_ transforms
- [x] Reconstruct the code of visualizer
- [x] Add val and test
- [ ] Add VOC support
- [ ] Test accuracy# Installation
```bash
git clone https://github.com/liux0614/yolo_nano
pip3 install -r requirements.txt
```# COCO
## Project Structure
root/
results/
datasets/
coco/
images/
train/
val/
annotation/
instances_train2017.json
instances_val2017.json## Train
To use COCO dataset loader, _pycocotools_ should be installed via the following command.
```bash
pip install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"
```To train on COCO dataset:
```bash
python3 main.py --dataset_path datasets/coco/images --annotation_path datasets/coco/annotation/instances_train2017.json
--dataset coco --lr 0.0001 --conf_thres 0.8 --nms_thres 0.5
```