Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/liux0614/yolo_nano

Unofficial implementation of yolo nano
https://github.com/liux0614/yolo_nano

Last synced: 3 months ago
JSON representation

Unofficial implementation of yolo nano

Awesome Lists containing this project

README

        

# Introduction

YOLO nano is from this [paper](https://arxiv.org/abs/1910.01271).

# TODO
Since I'm too busy at the end of the semester, I will continue working on this project after my exams.
- [x] Finish a draft version of implementation
- [x] Add README
- [x] Add checkpoint support
- [x] Add COCO dataset support (Code still needs cleaning. I'm working on it.)
- [x] Add _multi scale_ and _horizontal flip_ transforms
- [x] Reconstruct the code of visualizer
- [x] Add val and test
- [ ] Add VOC support
- [ ] Test accuracy

# Installation
```bash
git clone https://github.com/liux0614/yolo_nano
pip3 install -r requirements.txt
```

# COCO

## Project Structure


root/
results/
datasets/
coco/
images/
train/
val/
annotation/
instances_train2017.json
instances_val2017.json

## Train
To use COCO dataset loader, _pycocotools_ should be installed via the following command.
```bash
pip install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"
```

To train on COCO dataset:
```bash
python3 main.py --dataset_path datasets/coco/images --annotation_path datasets/coco/annotation/instances_train2017.json
--dataset coco --lr 0.0001 --conf_thres 0.8 --nms_thres 0.5
```