Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/living-with-machines/d3_js_viz_in_a_python_jupyter_notebook
Tutorial code showing how to put a D3 JavaScript visualisation in a Python Jupyter notebook.
https://github.com/living-with-machines/d3_js_viz_in_a_python_jupyter_notebook
blog d3 d3js javascript jupyter jupyter-notebook tutorial
Last synced: 1 day ago
JSON representation
Tutorial code showing how to put a D3 JavaScript visualisation in a Python Jupyter notebook.
- Host: GitHub
- URL: https://github.com/living-with-machines/d3_js_viz_in_a_python_jupyter_notebook
- Owner: Living-with-machines
- License: mit
- Created: 2020-01-17T16:46:28.000Z (almost 5 years ago)
- Default Branch: main
- Last Pushed: 2023-01-18T17:46:19.000Z (almost 2 years ago)
- Last Synced: 2023-04-01T08:58:54.957Z (over 1 year ago)
- Topics: blog, d3, d3js, javascript, jupyter, jupyter-notebook, tutorial
- Language: Jupyter Notebook
- Homepage: https://livingwithmachines.ac.uk/d3-javascript-visualisation-in-a-python-jupyter-notebook/
- Size: 70.3 KB
- Stars: 12
- Watchers: 4
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# D3 JavaScript visualisation in a Python Jupyter notebook
A [Living with Machines](http://livingwithmachines.ac.uk/) repository for code underlying [a blogpost about how to put a D3 JavaScript visualisation in a Python Jupyter notebook](http://livingwithmachines.ac.uk/d3-javascript-visualisation-in-a-python-jupyter-notebook/). The blogpost text is duplicated in `blogpost.md`.
Try the notebook live on myBinder.org: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Living-with-machines/D3_JS_viz_in_a_Python_Jupyter_notebook/main?filepath=D3_JS_viz_in_a_Python_Jupyter_notebook.ipynb)
## Setting up
Clone the repository:
```sh
$ git clone https://github.com/Living-with-machines/D3_JS_viz_in_a_Python_Jupyter_notebook
...
```Navigate into the directory:
```sh
$ cd D3_JS_viz_in_a_Python_Jupyter_notebook
```Set up all the dependencies:
```sh
$ conda create --name d3forJupyter --file requirements.txt
...
```Activate the environment:
```sh
$ conda activate d3forJupyter
```Set up a kernel for Jupyter:
```sh
$ python -m ipykernel install --user --name=d3forJupyter
Installed kernelspec d3forJupyter in
```Start up Jupyter notebook:
```sh
$ jupyter notebook
[I 17:36:30.869 NotebookApp] Serving notebooks from local directory:
...
```Now you should be able to open up the notebook in this repository, `D3_JS_viz_in_a_Python_Jupyter_notebook.ipynb` and try it out for yourself.