Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lixinsu/RCZoo
question answering, reading comprehension toolkit
https://github.com/lixinsu/RCZoo
deep-learning question-answering reading-comprehension
Last synced: 3 months ago
JSON representation
question answering, reading comprehension toolkit
- Host: GitHub
- URL: https://github.com/lixinsu/RCZoo
- Owner: lixinsu
- License: mit
- Created: 2018-07-24T03:14:18.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2022-10-16T05:37:21.000Z (about 2 years ago)
- Last Synced: 2024-05-13T00:04:39.833Z (6 months ago)
- Topics: deep-learning, question-answering, reading-comprehension
- Language: Python
- Homepage:
- Size: 12.7 MB
- Stars: 167
- Watchers: 15
- Forks: 43
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- MRCPapers - lixinsu / RCZoo
README
## Introduction
The RCZoo project is a toolkit for reading comprehension model. It contains the [PyTorch](https://pytorch.org/) reimplement of multiple reading comprehension models## Usage
- run `sh download.sh` to download the dataset and the glove embeddings.
- run `sh runs/train_squad.sh [bidaf|drqa|slqa|fusionnet|docqa]` to start the train process. (Check the xxx.sh scripts before run, as the preprocessing only need to be executed once)
## Dependencies
python 3.5
Pytorch 0.4
tqdm## performance
We train each model on train set for 40 epoch, and report the best performance on dev set.
Model | Exact Match | F1 | EM(+ELMo) | F1(+ELMo)
---- | --- | --- | --- | ---
Rnet | 69.25 | 78.97 |
BiDAF | 70.47 | 79.90 | 73.04 | 81.48
documentqa | 71.47 | 80.84 |
DrQA | 68.39 | 77.90 |
QAnet | ... | ... |
SLQA | 67.09 | 76.67 |
FusionNet | 68.27 | 77.79 |## Current progress
### [Rnet](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf)
### [BiDAF](https://arxiv.org/abs/1611.01603)
### [documentqa](https://arxiv.org/abs/1710.10723)
### [DrQA](https://arxiv.org/abs/1704.00051)
### [QAnet](https://arxiv.org/abs/1804.09541)
### [SLQA](http://aclweb.org/anthology/P18-1158)
### [FusionNet](https://openreview.net/forum?id=BJIgi_eCZ¬eId=BJIgi_eCZ)## acknowledgement
some code are borrowed from [DrQA](https://github.com/facebookresearch/DrQA.git), a cool project about reading comprehension.