An open API service indexing awesome lists of open source software.

https://github.com/lixus7/Time-Series-Works-Conferences

Time-Series Work Summary in CS Top Conferences (NIPS, ICML, ICLR, KDD, AAAI, WWW, IJCAI, CIKM, ICDM, ICDE, etc.)
https://github.com/lixus7/Time-Series-Works-Conferences

accident-detection anomaly-detection deep-learning demand-forecasting location multivariate-timeseries paper-list probabilistic-models spatio-temporal spatio-temporal-data spatio-temporal-modeling spatio-temporal-prediction time-series time-series-forecasting time-series-imputation time-series-prediction traffic-prediction travel-time-prediction

Last synced: 18 days ago
JSON representation

Time-Series Work Summary in CS Top Conferences (NIPS, ICML, ICLR, KDD, AAAI, WWW, IJCAI, CIKM, ICDM, ICDE, etc.)

Awesome Lists containing this project

README

        

# Time-Series Works and Conferences

# Backlog (To do): KDD 2025, ...

**Visit our [GitHub Page](https://lixus7.github.io/Time-Series-Works-Conferences/) for a better view.**

Click here to jump to the Conferences page with more conference information.

or [AI ML Summary Github](https://github.com/Lionelsy/Conference-Accepted-Paper-List)

Some other nice time-series repositories:

[xiyuanzh/time-series-papers](https://github.com/xiyuanzh/time-series-papers)

[qingsongedu/awesome-AI-for-time-series-papers](https://github.com/qingsongedu/awesome-AI-for-time-series-papers)

[xuehaouwa/Awesome-Trajectory-Prediction](https://github.com/xuehaouwa/Awesome-Trajectory-Prediction)

[My Time-series Repo-Star List](https://github.com/stars/lixus7/lists/time-series-list)



> I have a strong interest in time-series research. Welcome to contact me for discussions and collaborative efforts.

I am currently pursuing a doctoral degree in CSE of UNSW, Sydney, under the supervision of Prof. [Flora Salim](https://scholar.google.com.hk/citations?user=Yz35RSYAAAAJ&hl=zh-CN&oi=ao) and [Hao Xue](https://scholar.google.com.hk/citations?user=KwhLl7IAAAAJ&hl=zh-CN&oi=ao). I got the master degree under the supervision of Prof. [Xuan Song](https://scholar.google.com.hk/citations?user=_qCSLpMAAAAJ&hl=zh-CN&oi=ao), [Quanjun Chen](https://scholar.google.com.hk/citations?user=_PKwzTwAAAAJ&hl=zh-CN) and [Renhe Jiang](https://scholar.google.com.hk/citations?user=Yo2lwasAAAAJ&hl=zh-CN&oi=ao).

The task section has been completed and we will continue to update the methodology section. If you encounter any missing resources (papers/code) or errors, please don't hesitate to open an issue or make a pull request. Additionally, if you're interested in collaborating on this work, please feel free to contact me.

All papers are organized by task and methodology, including those not included in this GitHub repository, and are available for everyone to use on OneDrive and Google Drive (VPN required).

[OneDrive](https://1drv.ms/u/s!Au2cJRs-_u93lDbLrSDkDy8htv2V?e=ftuaXd)

[Google Drive](https://drive.google.com/drive/folders/17bILWdDxUrufRp3yilYfoU5VKywwS1g6?usp=sharing)

To reduce repetition, some data are in abbreviated form. Some terms may not represent general interpretations and apply only to this repository.

|Full Name | Abbreviation|
|:--|:--|
| Adaptive GNN | AGNN |
| Attention | Attn |
| AutoRegression(RNN,GRU,LSTM) | AR |
| Controlled Differential Equations | CDE |
| Contrastive Learning | CL |
| Encoder Decoder | EncDec |
| Ensemble | Ens |
| Feature Decomposed | FeaD |
| Federated Learning | FL |
| Generative Adversarial Network | GAN |
| Graph Convolutional Network | GCN |
| Hour, Day, Week, Month, etc | HA |
| Heterogeneous GNN | HGNN |
| Multiple Graph | MGNN |
| Memory | Mem |
| Meta Learning | MetaL |
| MultiTask | MulT |
| Network Architechture Search | NAS |
| Ordinary Differential Equations | ODE |
| Statistic | Stat |
| TCN (WaveNet) | TCN |
| Temporal Graph Network | TGN |
| Transformer | Trans |
| Transfer Learning | TransL |
| Variational Auto-Encoder | VAE |

# Recent Time Series Works Grouped by Task

- Multivariable Time Series Forecasting
- Multivariable Probabilistic Time Series Forecasting
- Time Series Imputation
- Time Series Anomaly Detection
- Demand Prediction
- Time Series Generation
- Travel Time Estimation
- Traffic Location Prediction
- Event Prediction
- Stock Prediction
- Other Forecasting

# [Multivariable Time Series Forecasting](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-: | - |
| Paper Nums:100+ | | | | | |
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | SSCNN | [Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting](https://proceedings.neurips.cc/paper_files/paper/2024/hash/7b122d0a0dcb1a86ffa25ccba154652b-Abstract-Conference.html) | [Pytorch](https://github.com/JLDeng/SSCNN)
![Stars](https://img.shields.io/github/stars/JLDeng/SSCNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/JLDeng/SSCNN?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | | [Are Language Models Actually Useful for Time Series Forecasting?](https://openreview.net/forum?id=54NSHO0lFe) | [Pytorch](https://github.com/BennyTMT/LLMsForTimeSeries)
![Stars](https://img.shields.io/github/stars/BennyTMT/LLMsForTimeSeries?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/BennyTMT/LLMsForTimeSeries?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | PGN | [PGN: The RNN's New Successor is Effective for Long-Range Time Series Forecasting](https://openreview.net/forum?id=ypEamFKu2O&noteId=jpzTU4OIxe) | [Pytorch](https://github.com/Water2sea/TPGN)
![Stars](https://img.shields.io/github/stars/Water2sea/TPGN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Water2sea/TPGN?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | CATS | [Are Self-Attentions Effective for Time Series Forecasting?](https://openreview.net/forum?id=iN43sJoib7&noteId=VrwF0T4VGH) | [Pytorch](https://github.com/dongbeank/CATS)
![Stars](https://img.shields.io/github/stars/dongbeank/CATS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/dongbeank/CATS?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | Attraos | [Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective](https://openreview.net/forum?id=fEYHZzN7kX) | [Pytorch](https://github.com/CityMind-Lab/NeurIPS24-Attraos)
![Stars](https://img.shields.io/github/stars/CityMind-Lab/NeurIPS24-Attraos?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/CityMind-Lab/NeurIPS24-Attraos?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | Time-FFM | [Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting](https://openreview.net/forum?id=HS0faHRhWD) | [Pytorch](https://github.com/yuppielqx/Time-FFM)
![Stars](https://img.shields.io/github/stars/yuppielqx/Time-FFM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yuppielqx/Time-FFM?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | Chimera | [Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models](https://openreview.net/forum?id=ncYGjx2vnE) | [Pytorch](https://github.com/ABehrouz/Chimera)
![Stars](https://img.shields.io/github/stars/ABehrouz/Chimera?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ABehrouz/Chimera?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | TimeXer | [TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables](https://openreview.net/forum?id=INAeUQ04lT) | [Pytorch](https://github.com/thuml/TimeXer)
![Stars](https://img.shields.io/github/stars/thuml/TimeXer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/TimeXer?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | MiTSformer| [Addressing Spatial-Temporal Heterogeneity: General Mixed Time Series Analysis via Latent Continuity Recovery and Alignment](https://openreview.net/forum?id=EMV8nIDZJn) | [Pytorch](https://github.com/chunhuiz/MiTSformer)
![Stars](https://img.shields.io/github/stars/chunhuiz/MiTSformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/chunhuiz/MiTSformer?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | TTMs| [Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series](https://openreview.net/forum?id=3O5YCEWETq) | [Pytorch](https://github.com/ibm-granite/granite-tsfm)
![Stars](https://img.shields.io/github/stars/ibm-granite/granite-tsfm?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ibm-granite/granite-tsfm?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | Sumba| [Structured Matrix Basis for Multivariate Time Series Forecasting with Interpretable Dynamics](https://openreview.net/forum?id=co7DsOwcop) | [Pytorch](https://github.com/chenxiaodanhit/Sumba)
![Stars](https://img.shields.io/github/stars/chenxiaodanhit/Sumba?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/chenxiaodanhit/Sumba?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | Peri-midFormer | [Peri-midFormer: Periodic Pyramid Transformer for Time Series Analysis](https://openreview.net/forum?id=5iUxMVJVEV) | [Pytorch](https://github.com/WuQiangXDU/Peri-midFormer)
![Stars](https://img.shields.io/github/stars/WuQiangXDU/Peri-midFormer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/WuQiangXDU/Peri-midFormer?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | Ada-MSHyper | [Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting](https://openreview.net/forum?id=RNbrIQ0se8) | [Pytorch](https://github.com/shangzongjiang/Ada-MSHyper)
![Stars](https://img.shields.io/github/stars/shangzongjiang/Ada-MSHyper?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/shangzongjiang/Ada-MSHyper?color=critical&style=social) | NIPS 2024
| Multivariable | ... | LPTM | [Large Pre-trained time series models for cross-domain Time series analysis tasks](https://openreview.net/forum?id=vMMzjCr5Zj) | [Pytorch](https://github.com/AdityaLab/LPTM)
![Stars](https://img.shields.io/github/stars/AdityaLab/LPTM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/AdityaLab/LPTM?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | CCM | [From Similarity to Superiority: Channel Clustering for Time Series Forecasting](https://openreview.net/forum?id=MDgn9aazo0) | [Pytorch](https://github.com/Graph-and-Geometric-Learning/TimeSeriesCCM)
![Stars](https://img.shields.io/github/stars/Graph-and-Geometric-Learning/TimeSeriesCCM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Graph-and-Geometric-Learning/TimeSeriesCCM?color=critical&style=social) | NIPS 2024
| Add News | Electricity
Exchange
Traffic
Bitcoin | | [From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection](https://openreview.net/forum?id=DpByqSbdhI) | [Pytorch](https://github.com/ameliawong1996/From_News_to_Forecast)
![Stars](https://img.shields.io/github/stars/ameliawong1996/From_News_to_Forecast?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ameliawong1996/From_News_to_Forecast?color=critical&style=social) | NIPS 2024
| Multivariable | ImageBind
IMU2CLIP
IMUGPT
HARGPT
LLaVA | UniMTS | [UniMTS: Unified Pre-training for Motion Time Series](https://openreview.net/forum?id=DpByqSbdhI) | [Pytorch](https://github.com/xiyuanzh/UniMTS)
![Stars](https://img.shields.io/github/stars/xiyuanzh/UniMTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/xiyuanzh/UniMTS?color=critical&style=social) | NIPS 2024
| Attack | PEMS03
PEMS04
PEMS08
Weather
ETTm1 | BackTime | [BackTime: Backdoor Attacks on Multivariate Time Series Forecasting](https://openreview.net/forum?id=y8HUXkwAOg) | [Pytorch](https://github.com/xiaolin-cs/BackTime)
![Stars](https://img.shields.io/github/stars/xiaolin-cs/BackTime?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/xiaolin-cs/BackTime?color=critical&style=social) | NIPS 2024
| Less data | Electricity
Solar
Traffic
PEMS-BAY
METR-LA | ChronoEpilogi | [ChronoEpilogi: Scalable Time Series Selection with Multiple Solutions](https://openreview.net/forum?id=y8HUXkwAOg) | [Pytorch](https://github.com/ev07/ChronoEpilogi)
![Stars](https://img.shields.io/github/stars/ev07/ChronoEpilogi?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ev07/ChronoEpilogi?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | FAN | [Frequency Adaptive Normalization For Non-stationary Time Series Forecasting](https://openreview.net/forum?id=T0axIflVDD) | [Pytorch](https://github.com/wayne155/FAN)
![Stars](https://img.shields.io/github/stars/wayne155/FAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/wayne155/FAN?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | GLAFF | [Rethinking the Power of Timestamps for Robust Time Series Forecasting: A Global-Local Fusion Perspective](https://openreview.net/forum?id=EY2agT920S) | [Pytorch](https://github.com/ForestsKing/GLAFF)
![Stars](https://img.shields.io/github/stars/ForestsKing/GLAFF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ForestsKing/GLAFF?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | FilterNet | [FilterNet: Harnessing Frequency Filters for Time Series Forecasting](https://openreview.net/forum?id=ugL2D9idAD) | [Pytorch](https://github.com/aikunyi/FilterNet)
![Stars](https://img.shields.io/github/stars/aikunyi/FilterNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/aikunyi/FilterNet?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | CycleNet | [CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns](https://openreview.net/forum?id=clBiQUgj4w) | [Pytorch](https://github.com/ACAT-SCUT/CycleNet)
![Stars](https://img.shields.io/github/stars/ACAT-SCUT/CycleNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ACAT-SCUT/CycleNet?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | RATD | [Retrieval-Augmented Diffusion Models for Time Series Forecasting](https://openreview.net/forum?id=dRJJt0Ji48&noteId=8wGyyvVUNr) | [Pytorch](https://github.com/stanliu96/RATD)
![Stars](https://img.shields.io/github/stars/stanliu96/RATD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/stanliu96/RATD?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | DDN | [DDN: Dual-domain Dynamic Normalization for Non-stationary Time Series Forecasting](https://openreview.net/forum?id=RVZfra6sZo) | [Pytorch](https://github.com/Hank0626/DDN)
![Stars](https://img.shields.io/github/stars/Hank0626/DDN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Hank0626/DDN?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | FBM | [Rethinking Fourier Transform from A Basis Functions Perspective for Long-term Time Series Forecasting](https://openreview.net/forum?id=BAfKBkr8IP) | [Pytorch](https://github.com/runze1223/Fourier-Basis-Mapping)
![Stars](https://img.shields.io/github/stars/runze1223/Fourier-Basis-Mapping?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/runze1223/Fourier-Basis-Mapping?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | BSA | [Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting](https://openreview.net/forum?id=dxyNVEBQMp) | [Pytorch](https://github.com/DJLee1208/BSA_2024)
![Stars](https://img.shields.io/github/stars/DJLee1208/BSA_2024?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/DJLee1208/BSA_2024?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | DeformableTST | [DeformableTST: Transformer for Time Series Forecasting without Over-reliance on Patching](https://openreview.net/forum?id=B1Iq1EOiVU) | [Pytorch](https://github.com/luodhhh/DeformableTST)
![Stars](https://img.shields.io/github/stars/luodhhh/DeformableTST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/luodhhh/DeformableTST?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | SOFTS | [SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion](https://openreview.net/forum?id=89AUi5L1uA) | [Pytorch](https://github.com/Secilia-Cxy/SOFTS)
![Stars](https://img.shields.io/github/stars/Secilia-Cxy/SOFTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Secilia-Cxy/SOFTS?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | | [Scaling Law for Time Series Forecasting](https://openreview.net/forum?id=Cr2jEHJB9q) | [Pytorch](https://github.com/JingzheShi/ScalingLawForTimeSeriesForecasting)
![Stars](https://img.shields.io/github/stars/JingzheShi/ScalingLawForTimeSeriesForecasting?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/JingzheShi/ScalingLawForTimeSeriesForecasting?color=critical&style=social) | NIPS 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | AutoTimes | [AutoTimes: Autoregressive Time Series Forecasters via Large Language Models](https://openreview.net/forum?id=HS0faHRhWD) | [Pytorch](https://github.com/thuml/AutoTimes)
![Stars](https://img.shields.io/github/stars/thuml/AutoTimes?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/AutoTimes?color=critical&style=social) | NIPS 2024
| Multi Task | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | UniTS | [UniTS: A Unified Multi-Task Time Series Model](https://openreview.net/forum?id=nBOdYBptWW) | [Pytorch](https://github.com/mims-harvard/UniTS)
![Stars](https://img.shields.io/github/stars/mims-harvard/UniTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/mims-harvard/UniTS?color=critical&style=social) | NIPS 2024
| Foundation TS | ... | MOMENT | [MOMENT: A Family of Open Time-series Foundation Models](https://icml.cc/virtual/2024/poster/34530) | [Pytorch](https://github.com/moment-timeseries-foundation-model/moment)
![Stars](https://img.shields.io/github/stars/moment-timeseries-foundation-model/moment?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/moment-timeseries-foundation-model/moment?color=critical&style=social) | ICML 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | OSL | [An Analysis of Linear Time Series Forecasting Models](https://icml.cc/virtual/2024/poster/32697) | [Pytorch](https://github.com/sir-lab/linear-forecasting)
![Stars](https://img.shields.io/github/stars/sir-lab/linear-forecasting?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/sir-lab/linear-forecasting?color=critical&style=social) | ICML 2024
| Six | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | UP2ME | [UP2ME: Univariate Pre-training to Multivariate Fine-tuning as a General-purpose Framework for Multivariate Time Series Analysis](https://icml.cc/virtual/2024/poster/33686) | [Pytorch](https://github.com/Thinklab-SJTU/UP2ME)
![Stars](https://img.shields.io/github/stars/Thinklab-SJTU/UP2ME?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Thinklab-SJTU/UP2ME?color=critical&style=social) | ICML 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | SparseTSF | [SparseTSF: Modeling Long-term Time Series Forecasting with *1k* Parameters](https://openreview.net/forum?id=54NSHO0lFe) | [Pytorch](https://github.com/lss-1138/SparseTSF)
![Stars](https://img.shields.io/github/stars/lss-1138/SparseTSF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/lss-1138/SparseTSF?color=critical&style=social) | ICML 2024
| Multivariable | Electricity
PEMSD7M
BikeNYC
[TimesNet_data](https://github.com/thuml/Time-Series-Library) | SCNN | [Disentangling Structured Components: Towards Adaptive, Interpretable and Scalable Time Series Forecasting](https://ieeexplore.ieee.org/document/10457027) | [Pytorch](https://github.com/JLDeng/SCNN)
![Stars](https://img.shields.io/github/stars/JLDeng/SCNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/JLDeng/SCNN?color=critical&style=social) | TKDE 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | iTransformer | [iTransformer: Inverted Transformers Are Effective for Time Series Forecasting](https://openreview.net/forum?id=JePfAI8fah) | [Pytorch](https://github.com/thuml/iTransformer)
![Stars](https://img.shields.io/github/stars/thuml/iTransformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/iTransformer?color=critical&style=social) | ICLR 2024
| Multivariable | NorPool
Caiso
Traffic
Electricity
Weather
Exchange
ETT
Wind | mr-Diff | [Multi-Resolution Diffusion Models for Time Series Forecasting](https://openreview.net/forum?id=mmjnr0G8ZY) | None | ICLR 2024
| Multivariable | ETT
Electricity
Weather
Traffic
Exchange
ILI | ModernTCN | [Multi-Resolution Diffusion Models for Time Series Forecasting](https://openreview.net/forum?id=vpJMJerXHU) | [Pytorch](https://github.com/luodhhh/ModernTCN)
![Stars](https://img.shields.io/github/stars/luodhhh/ModernTCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/luodhhh/ModernTCN?color=critical&style=social) | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | Time-LLM | [Time-LLM: Time Series Forecasting by Reprogramming Large Language Models](https://openreview.net/forum?id=Unb5CVPtae) | [Pytorch](https://github.com/KimMeen/Time-LLM)
![Stars](https://img.shields.io/github/stars/KimMeen/Time-LLM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/KimMeen/Time-LLM?color=critical&style=social) | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | TEMPO | [TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting](https://openreview.net/forum?id=YH5w12OUuU) | [Pytorch](https://github.com/DC-research/TEMPO)
![Stars](https://img.shields.io/github/stars/DC-research/TEMPO?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/DC-research/TEMPO?color=critical&style=social) | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | CARD | [CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting](https://openreview.net/forum?id=MJksrOhurE) | [Pytorch](https://github.com/wxie9/CARD)
![Stars](https://img.shields.io/github/stars/wxie9/CARD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/wxie9/CARD?color=critical&style=social) | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | ARM | [ARM: Refining Multivariate Forecasting with Adaptive Temporal-Contextual Learning](https://openreview.net/forum?id=JWpwDdVbaM) | None | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | DAM | [DAM: Towards a Foundation Model for Forecasting](https://openreview.net/forum?id=4NhMhElWqP) | [None](https://openreview.net/attachment?id=4NhMhElWqP&name=supplementary_material) | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library)
PEMS3478 | TimeMixer | [TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting](https://openreview.net/forum?id=7oLshfEIC2) | [Pytorch](https://github.com/kwuking/TimeMixer)
![Stars](https://img.shields.io/github/stars/kwuking/TimeMixer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/kwuking/TimeMixer?color=critical&style=social) | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | PDF | [Periodicity Decoupling Framework for Long-term Series Forecasting](https://openreview.net/forum?id=dp27P5HBBt) | [Pytorch](https://github.com/Hank0626/PDF)
![Stars](https://img.shields.io/github/stars/Hank0626/PDF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Hank0626/PDF?color=critical&style=social) | ICLR 2024
| Multivariable
Missing Value| METR-LA
Electricity
PEMS
ETT
BeijingAir| BiTGraph | [Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Values](https://openreview.net/forum?id=O9nZCwdGcG) | [Pytorch](https://github.com/chenxiaodanhit/BiTGraph)
![Stars](https://img.shields.io/github/stars/chenxiaodanhit/BiTGraph?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/chenxiaodanhit/BiTGraph?color=critical&style=social) | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library)
PEMS08 | LIFT | [Rethinking Channel Dependence for Multivariate Time Series Forecasting: Learning from Leading Indicators](https://openreview.net/forum?id=JiTVtCUOpS) | [Pytorch](https://github.com/SJTU-Quant/LIFT)
![Stars](https://img.shields.io/github/stars/SJTU-Quant/LIFT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SJTU-Quant/LIFT?color=critical&style=social) | ICLR 2024
| Multivariable | ETT
Weather
ILI
Traffic | STanHop | [STanHop: Sparse Tandem Hopfield Model for Memory-Enhanced Time Series Prediction](https://openreview.net/forum?id=6iwg437CZs) | [Pytorch](https://github.com/MAGICS-LAB/STanHop)
![Stars](https://img.shields.io/github/stars/MAGICS-LAB/STanHop?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/MAGICS-LAB/STanHop?color=critical&style=social) | ICLR 2024
| Multivariable | ETT
Weather
Electricity
Traffic
ILI
CloudCluster | Pathformer | [Pathformer: Multi-scale Transformers with Adaptive Pathways for Time Series Forecasting](https://openreview.net/forum?id=vpJMJerXHU) | [Pytorch](https://github.com/decisionintelligence/pathformer)
![Stars](https://img.shields.io/github/stars/decisionintelligence/pathformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/decisionintelligence/pathformer?color=critical&style=social) | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | pits | [Learning to Embed Time Series Patches Independently](https://openreview.net/forum?id=vpJMJerXHU) | [Pytorch](https://github.com/seunghan96/pits)
![Stars](https://img.shields.io/github/stars/seunghan96/pits?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/seunghan96/pits?color=critical&style=social) | ICLR 2024
| Multivariable | ETT
Weather
Electricity
Traffic | FITS | [FITS: Modeling Time Series with 10k Parameters](https://openreview.net/forum?id=bWcnvZ3qMb) | [Pytorch](https://github.com/VEWOXIC/FITS)
![Stars](https://img.shields.io/github/stars/VEWOXIC/FITS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/VEWOXIC/FITS?color=critical&style=social) | ICLR 2024
| Multivariable | ETT
Electricity
Weather
Lora | AutoTCL | [Parametric Augmentation for Time Series Contrastive Learnin](https://openreview.net/forum?id=EIPLdFy3vp) | [Pytorch](https://github.com/AslanDing/AutoTCL)
![Stars](https://img.shields.io/github/stars/AslanDing/AutoTCL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/AslanDing/AutoTCL?color=critical&style=social) | ICLR 2024
| Multivariable | ETT
Exchange
ILI | GLIP | [Interpretable Sparse System Identification: Beyond Recent Deep Learning Techniques on Time-Series Prediction](https://openreview.net/forum?id=aFWUY3E7ws) | [Pytorch](https://openreview.net/attachment?id=aFWUY3E7ws&name=supplementary_material) | ICLR 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | Fredformer | [Fredformer: Frequency Debiased Transformer for Time Series Forecasting](https://dl.acm.org/doi/abs/10.1145/3637528.3671855) | [Pytorch](https://github.com/chenzRG/Fredformer)
![Stars](https://img.shields.io/github/stars/chenzRG/Fredformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/chenzRG/Fredformer?color=critical&style=social) | KDD 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | GPHT | [Generative Pretrained Hierarchical Transformer for Time Series Forecasting](https://dl.acm.org/doi/abs/10.1145/3637528.3671855) | [Pytorch](https://github.com/icantnamemyself/GPHT)
![Stars](https://img.shields.io/github/stars/icantnamemyself/GPHT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/icantnamemyself/GPHT?color=critical&style=social) | KDD 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | FRNet | [FRNet: Frequency-based Rotation Network for Long-term Time Series Forecasting](https://dl.acm.org/doi/abs/10.1145/3637528.3671713) | [Pytorch](https://github.com/SiriZhang45/FRNet)
![Stars](https://img.shields.io/github/stars/SiriZhang45/FRNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SiriZhang45/FRNet?color=critical&style=social) | KDD 2024
| Missing MTS | METR-LA
PEMS-BAY
PEMS04
PEMS08
China AQI | GinAR | [GinAR: An End-To-End Multivariate Time Series Forecasting Model Suitable for Variable Missing](https://dl.acm.org/doi/abs/10.1145/3637528.3672055) | [Pytorch](https://github.com/GestaltCogTeam/GinAR)
![Stars](https://img.shields.io/github/stars/GestaltCogTeam/GinAR?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/GestaltCogTeam/GinAR?color=critical&style=social) | KDD 2024
| Multivariable | METR-LA
PEMS-BAY
PEMS04

PEMS07 PEMS08 | HimNet | [Heterogeneity-Informed Meta-Parameter Learning for Spatiotemporal Time Series Forecasting](https://dl.acm.org/doi/abs/10.1145/3637528.3671961) | [Pytorch](https://github.com/XDZhelheim/HimNet)
![Stars](https://img.shields.io/github/stars/XDZhelheim/HimNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/XDZhelheim/HimNet?color=critical&style=social) | KDD 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | CDS | [Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift](https://dl.acm.org/doi/abs/10.1145/3637528.3671926) | [Pytorch](https://github.com/HALF111/calibration_CDS)
![Stars](https://img.shields.io/github/stars/HALF111/calibration_CDS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HALF111/calibration_CDS?color=critical&style=social) | KDD 2024
| Foundation
Traffic | TaxiBJ
Crawd
BikeNYC
Cellular
TDrive
TrafficSH | UniST | [UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction](https://dl.acm.org/doi/abs/10.1145/3637528.3671662) | [Pytorch](https://github.com/tsinghua-fib-lab/UniST)
![Stars](https://img.shields.io/github/stars/tsinghua-fib-lab/UniST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tsinghua-fib-lab/UniST?color=critical&style=social) | KDD 2024
| Early
Traffic | METR-LA
EMS
NYPD | STEMO | [STEMO: Early Spatio-temporal Forecasting with Multi-Objective Reinforcement Learning](https://dl.acm.org/doi/abs/10.1145/3637528.3671922) | [Pytorch](https://github.com/coco0106/MO-STEP)
![Stars](https://img.shields.io/github/stars/coco0106/MO-STEP?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/coco0106/MO-STEP?color=critical&style=social) | KDD 2024
| New nodes
Traffic | Large-ST | STONE | [STONE: A Spatio-temporal OOD Learning Framework Kills Both Spatial and Temporal Shifts](https://dl.acm.org/doi/abs/10.1145/3637528.3671680) | [Pytorch](https://github.com/PoorOtterBob/STONE-KDD-2024)
![Stars](https://img.shields.io/github/stars/PoorOtterBob/STONE-KDD-2024?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/PoorOtterBob/STONE-KDD-2024?color=critical&style=social) | KDD 2024
| Irregular
Traffic | Zhuzhou
Baoding | Aseer | [Irregular Traffic Time Series Forecasting Based on Asynchronous Spatio-Temporal Graph Convolutional Networks](https://dl.acm.org/doi/abs/10.1145/3637528.3671665) | [Pytorch](https://github.com/usail-hkust/ASeer)
![Stars](https://img.shields.io/github/stars/usail-hkust/ASeer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/usail-hkust/ASeer?color=critical&style=social) | KDD 2024
| Multivariable | Stock
Exchange
Weather | CONTIME | [Addressing Prediction Delays in Time Series Forecasting: A Continuous GRU Approach with Derivative Regularization](https://dl.acm.org/doi/abs/10.1145/3637528.3671969) | [Pytorch](https://github.com/sheoyon-jhin/CONTIME)
![Stars](https://img.shields.io/github/stars/sheoyon-jhin/CONTIME?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/sheoyon-jhin/CONTIME?color=critical&style=social) | KDD 2024
| Multivariable | PEMS07
Large-ST | GWT | [Pre-Training Identification of Graph Winning Tickets in Adaptive Spatial-Temporal Graph Neural Networks](https://dl.acm.org/doi/abs/10.1145/3637528.3671912) | [Pytorch](https://anonymous.4open.science/r/paper-1430) | KDD 2024
| Large Scale | Large-ST | RPMixer | [RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data](https://dl.acm.org/doi/abs/10.1145/3637528.3671881) | [Pytorch](https://sites.google.com/view/rpmixer) | KDD 2024
| Demand Supply
Prediction | Shanghai
Zhengzhou | MulSTE | [MulSTE: A Multi-view Spatio-temporal Learning Framework with Heterogeneous Event Fusion for Demand-supply Prediction](https://dl.acm.org/doi/abs/10.1145/3637528.3672030) | [Pytorch](https://github.com/mulste-kdd2024/MulSTE)
![Stars](https://img.shields.io/github/stars/mulste-kdd2024/MulSTE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/mulste-kdd2024/MulSTE?color=critical&style=social) | KDD 2024
| Multivariable | 108s | AutoXPCR | [AutoXPCR: Automated Multi-Objective Model Selection for Time Series Forecasting](https://dl.acm.org/doi/abs/10.1145/3637528.3672057) | [TF](https://github.com/raphischer/xpcr)
![Stars](https://img.shields.io/github/stars/raphischer/xpcr?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/raphischer/xpcr?color=critical&style=social) | KDD 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | UniTime | [UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting](https://dl.acm.org/doi/abs/10.1145/3589334.3645434) | [Pytorch](https://github.com/liuxu77/UniTime)
![Stars](https://img.shields.io/github/stars/liuxu77/UniTime?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/liuxu77/UniTime?color=critical&style=social) | WWW 2024
| Multivariable | Ross
Saratoga
UpperPen
SFC | DAN | [Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/27768) | [Pytorch](https://github.com/davidanastasiu/dan)
![Stars](https://img.shields.io/github/stars/davidanastasiu/dan?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/davidanastasiu/dan?color=critical&style=social) | AAAI 2024
| Multivariable | ILI
Weather
Traffic
Electricity
ETT
Exchange | HDMixer | [HDMixer: Hierarchical Dependency with Extendable Patch for Multivariate Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/29155) | [Pytorch](https://github.com/hqh0728/HDMixer)
![Stars](https://img.shields.io/github/stars/hqh0728/HDMixer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hqh0728/HDMixer?color=critical&style=social) | AAAI 2024
| Multivariable | PEMS03
PEMS04
PEMS07
PEMS08
England
TaxiBJ
PEMS-BAY | STPGNN | [Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/28707) | None | AAAI 2024
| Multivariable | FD001
FD002
FD003
FD004 | FC-STGNN | [Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data](https://ojs.aaai.org/index.php/AAAI/article/view/29500) | [Pytorch](https://github.com/Frank-Wang-oss/FCSTGNN)
![Stars](https://img.shields.io/github/stars/Frank-Wang-oss/FCSTGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Frank-Wang-oss/FCSTGNN?color=critical&style=social) | AAAI 2024
| Multivariable | PEMS04
PEMS08
blockchain | TMP-Nets | [Time-Aware Knowledge Representations of Dynamic Objects with Multidimensional Persistence](https://ojs.aaai.org/index.php/AAAI/article/view/29051) | None | AAAI 2024
| Multivariable | METR-LA
PEMS-BAY | ModWaveMLP | [ModWaveMLP: MLP-Based Mode Decomposition and Wavelet Denoising Model to Defeat Complex Structures in Traffic Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/28753) | [TF](https://github.com/Kqingzheng/ModWaveMLP)
![Stars](https://img.shields.io/github/stars/Kqingzheng/ModWaveMLP?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Kqingzheng/ModWaveMLP?color=critical&style=social) | AAAI 2024
| Multivariable |Flight
Weather
ETT
Electricity
Exchange | MSGNet | [MSGNet: Learning Multi-Scale Inter-series Correlations for Multivariate Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/28991) | [Pytorch](https://github.com/YoZhibo/MSGNet)
![Stars](https://img.shields.io/github/stars/YoZhibo/MSGNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/YoZhibo/MSGNet?color=critical&style=social) | AAAI 2024
| Multivariable | Self-PeMS | DLF | [Towards Dynamic Spatial-Temporal Graph Learning: A Decoupled Perspective](https://ojs.aaai.org/index.php/AAAI/article/view/28759) | [Pytorch](https://github.com/wangbinwu13116175205/DLF)
![Stars](https://img.shields.io/github/stars/wangbinwu13116175205/DLF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/wangbinwu13116175205/DLF?color=critical&style=social) | AAAI 2024
| Multivariable |ETT
Weather
ILI
Exchange | HTV-Trans | [Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/29483) | [Pytorch](https://github.com/flare200020/HTV_Trans)
![Stars](https://img.shields.io/github/stars/flare200020/HTV_Trans?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/flare200020/HTV_Trans?color=critical&style=social) | AAAI 2024
| Multivariable |A-share
Cross-Market
ETT | ST-DAN| [Adaptive Meta-Learning Probabilistic Inference Framework for Long Sequence Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/29661) | [Pytorch](https://github.com/Zhu-JP/AMPIF)
![Stars](https://img.shields.io/github/stars/Zhu-JP/AMPIF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Zhu-JP/AMPIF?color=critical&style=social) | AAAI 2024
| Six | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | CTRL | [An NCDE-based Framework for Universal Representation Learning of Time Series](https://www.ijcai.org/proceedings/2024/511) | [Pytorch](https://github.com/LiuZH-19/CTRL)
![Stars](https://img.shields.io/github/stars/LiuZH-19/CTRL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LiuZH-19/CTRL?color=critical&style=social) | IJCAI 2024
| Traffic | PEMS3478 | STD-MAE | [Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting](https://www.ijcai.org/proceedings/2024/442) | [Pytorch](https://github.com/Jimmy-7664/STD-MAE)
![Stars](https://img.shields.io/github/stars/Jimmy-7664/STD-MAE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Jimmy-7664/STD-MAE?color=critical&style=social) | IJCAI 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | DERITS | [Deep Frequency Derivative Learning for Non-stationary Time Series Forecasting](https://www.ijcai.org/proceedings/2024/436) | None | IJCAI 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | Skip-Timeformer | [Skip-Timeformer: Skip-Time Interaction Transformer for Long Sequence Time-Series Forecasting](https://www.ijcai.org/proceedings/2024/608) | None | IJCAI 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | VCformer | [VCformer: Variable Correlation Transformer with Inherent Lagged Correlation for Multivariate Time Series Forecasting](https://www.ijcai.org/proceedings/2024/590) | [Pytorch](https://github.com/CSyyn/VCformer)
![Stars](https://img.shields.io/github/stars/CSyyn/VCformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/CSyyn/VCformer?color=critical&style=social) | IJCAI 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | LeRet | [LeRet: Language-Empowered Retentive Network for Time Series Forecasting](https://www.ijcai.org/proceedings/2024/460) | [Pytorch](https://github.com/hqh0728/LeRet)
![Stars](https://img.shields.io/github/stars/hqh0728/LeRet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hqh0728/LeRet?color=critical&style=social) | IJCAI 2024
| Missing Variate | METR-LA
Solar
Traffic
ECG5000 | SDformer | [SDformer: Transformer with Spectral Filter and Dynamic Attention for Multivariate Time Series Long-term Forecasting](https://www.ijcai.org/proceedings/2024/228) | None | IJCAI 2024
| Traffic | METR-LA
PEMS-BAY
PEMSD7M | DCST | [Make Graph Neural Networks Great Again: A Generic Integration Paradigm of Topology-Free Patterns for Traffic Speed Prediction](https://www.ijcai.org/proceedings/2024/288) | [Pytorch](https://github.com/ibizatomorrow/DCST)
![Stars](https://img.shields.io/github/stars/ibizatomorrow/DCST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ibizatomorrow/DCST?color=critical&style=social) | IJCAI 2024
| Traffic | METR-LA
PEMS-BAY | ST-nFBST | [Full Bayesian Significance Testing for Neural Networks in Traffic Forecasting](https://www.ijcai.org/proceedings/2024/245) | [Pytorch](https://github.com/liuzh-buaa/ST-nFBST)
![Stars](https://img.shields.io/github/stars/liuzh-buaa/ST-nFBST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/liuzh-buaa/ST-nFBST?color=critical&style=social) | IJCAI 2024
| multi-source
SSL | BikeIn
BikeOut
TaxiIn
TaxiOut
Air | MoSSL | [Multi-Modality Spatio-Temporal Forecasting via Self-Supervised Learning](https://www.ijcai.org/proceedings/2024/223) | [Pytorch](https://github.com/beginner-sketch/MoSSL)
![Stars](https://img.shields.io/github/stars/beginner-sketch/MoSSL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/beginner-sketch/MoSSL?color=critical&style=social) | IJCAI 2024
| Traffic
CrossCity | METR-LA
PEMS-BAY
DiDiCD
DiDiSZ | pFedCTP | [Personalized Federated Learning for Cross-City Traffic Prediction](https://www.ijcai.org/proceedings/2024/611) | [Pytorch](https://github.com/ZYuSdu/pFedCTP)
![Stars](https://img.shields.io/github/stars/ZYuSdu/pFedCTP?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ZYuSdu/pFedCTP?color=critical&style=social) | IJCAI 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | SDformer | [SDformer: Transformer with Spectral Filter and Dynamic Attention for Multivariate Time Series Long-term Forecasting](https://www.ijcai.org/proceedings/2024/629) | [Pytorch](https://github.com/zhouziyu02/SDformer)
![Stars](https://img.shields.io/github/stars/zhouziyu02/SDformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhouziyu02/SDformer?color=critical&style=social) | IJCAI 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | SpecAR-Net | [SpecAR-Net: Spectrogram Analysis and Representation Network for Time Series](https://www.ijcai.org/proceedings/2024/433) | [Pytorch](https://github.com/Dongyi2go/SpecAR_Net)
![Stars](https://img.shields.io/github/stars/Dongyi2go/SpecAR_Net?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Dongyi2go/SpecAR_Net?color=critical&style=social) | IJCAI 2024
| Multivariable | [TimesNet_data](https://github.com/thuml/Time-Series-Library) | SCAT | [SCAT: A Time Series Forecasting with Spectral Central Alternating Transformers](https://www.ijcai.org/proceedings/2024/622) | None | IJCAI 2024
| Traffic | Traffic
ECG
COVID-19
Wiki
Solar | DIAN | [Decoupled Invariant Attention Network for Multivariate Time-series Forecasting](https://www.ijcai.org/proceedings/2024/275) | [Pytorch](https://github.com/xhh39/DIAN)
![Stars](https://img.shields.io/github/stars/xhh39/DIAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/xhh39/DIAN?color=critical&style=social) | IJCAI 2024
| Traffic | Wave
Wind
Air | EPL | [Self-adaptive Extreme Penalized Loss for Imbalanced Time Series Prediction](https://www.ijcai.org/proceedings/2024/568) | [Pytorch](https://github.com/Ldiper/EPL)
![Stars](https://img.shields.io/github/stars/Ldiper/EPL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Ldiper/EPL?color=critical&style=social) | IJCAI 2024
| Multivariable | ETT
Electricity
Traffic
Weather
Exchange | U-Mixer | [U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/29337) | None | AAAI 2024
| Irregular |USHCN
MIMIC-III
MIMIC-IV
Physionet-12 | GraFITi | [GraFITi: Graphs for Forecasting Irregularly Sampled Time Series](https://ojs.aaai.org/index.php/AAAI/article/view/29560) | [Pytorch](https://github.com/yalavarthivk/GraFITi)
![Stars](https://img.shields.io/github/stars/yalavarthivk/GraFITi?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yalavarthivk/GraFITi?color=critical&style=social) | AAAI 2024
| Traffic
Flow | PEMS03
PEMS04
PEMS07
PEMS08 | MultiSPANS | [MultiSPANS: A Multi-range Spatial-Temporal Transformer Network for Traffic Forecast via Structural Entropy Optimization](https://dl.acm.org/doi/10.1145/3616855.3635820) | [Pytorch](https://github.com/SELGroup/MultiSPANS)
![Stars](https://img.shields.io/github/stars/SELGroup/MultiSPANS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SELGroup/MultiSPANS?color=critical&style=social) | WSDM 2024
| Multivariable | SIP
NYC
METR-LA | CreST | [CreST: A Credible Spatiotemporal Learning Framework for Uncertainty-aware Traffic Forecasting](https://dl.acm.org/doi/10.1145/3616855.3635759) | None | WSDM 2024
| Multivariable | Web Traffic
Labour
Traffic
Tourism | HTS | [NeuralReconciler for Hierarchical Time Series Forecasting](https://dl.acm.org/doi/10.1145/3616855.3635806) | None | WSDM 2024
| Multivariable | NYC13
BikeNYC
Chicago21
Chicago22 | CityCAN | [CityCAN: Causal Attention Network for Citywide Spatio-Temporal Forecasting](https://dl.acm.org/doi/10.1145/3616855.3635764) | None | WSDM 2024
| Multivariable | Solar
Wiki
Traffic
ECG
Electricity
COVID-19
Weather
ETT | FreTS | [Frequency-domain MLPs are More Effective Learners in Time Series Forecasting](https://proceedings.neurips.cc/paper_files/paper/2023/hash/f1d16af76939f476b5f040fd1398c0a3-Abstract-Conference.html) | [Pytorch](https://github.com/aikunyi/FreTS)
![Stars](https://img.shields.io/github/stars/aikunyi/FreTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/aikunyi/FreTS?color=critical&style=social) | NIPS 2023
| LLM4TS
Zero Shot | Darts
Monash
Informer | - | [Large Language Models Are Zero-Shot Time Series Forecasters](https://proceedings.neurips.cc/paper_files/paper/2023/hash/3eb7ca52e8207697361b2c0fb3926511-Abstract-Conference.html) | [LLM](https://github.com/ngruver/llmtime)
![Stars](https://img.shields.io/github/stars/ngruver/llmtime?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ngruver/llmtime?color=critical&style=social) | NIPS 2023
| Zero Shot | ECL
ETT
Exchange
ILI
Traffic
Weather | ForecastPFN | [ForecastPFN: Synthetically-Trained Zero-Shot Forecasting](https://proceedings.neurips.cc/paper_files/paper/2023/hash/0731f0e65559059eb9cd9d6f44ce2dd8-Abstract-Conference.html) | [TF](https://github.com/abacusai/forecastpfn)
![Stars](https://img.shields.io/github/stars/abacusai/forecastpfn?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/abacusai/forecastpfn?color=critical&style=social) | NIPS 2023
| Multivariable | ECL
Traffic
ETT
Weather | WITRAN | [WITRAN: Water-wave Information Transmission and Recurrent Acceleration Network for Long-range Time Series Forecasting](https://proceedings.neurips.cc/paper_files/paper/2023/hash/2938ad0434a6506b125d8adaff084a4a-Abstract-Conference.html) | [Pytorch](https://github.com/Water2sea/WITRAN)
![Stars](https://img.shields.io/github/stars/Water2sea/WITRAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Water2sea/WITRAN?color=critical&style=social) | NIPS 2023
| Multivariable | ETT
Weather
PEMS03
PEMS04
PEMS07
PEMS08 | Neural Lad | [Neural Lad: A Neural Latent Dynamics Framework for Times Series Modeling](https://openreview.net/forum?id=bISkJSa5Td) | None | NIPS 2023
| Multivariable | ETT
Weather
Electricity | OneNet | [OneNet: Enhancing Time Series Forecasting Models under Concept Drift by Online Ensembling](https://proceedings.neurips.cc/paper_files/paper/2023/hash/dd6a47bc0aad6f34aa5e77706d90cdc4-Abstract-Conference.html) | [Pytorch](https://github.com/yfzhang114/OneNet)
![Stars](https://img.shields.io/github/stars/yfzhang114/OneNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yfzhang114/OneNet?color=critical&style=social) | NIPS 2023
| Multivariable
Solar Irradiance| CAB
TAM | CrossViVit | [Improving day-ahead Solar Irradiance Time Series Forecasting by Leveraging Spatio-Temporal Context](https://openreview.net/forum?id=x5ZruOa4ax) | [Pytorch](https://github.com/gitbooo/CrossViVit)
![Stars](https://img.shields.io/github/stars/gitbooo/CrossViVit?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/gitbooo/CrossViVit?color=critical&style=social) | NIPS 2023
| Multivariable | ECL
ETT
Exchange
ILI
Traffic
Weather | Koopa | [Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors](https://proceedings.neurips.cc/paper_files/paper/2023/hash/dd6a47bc0aad6f34aa5e77706d90cdc4-Abstract-Conference.html) | [Pytorch](https://github.com/thuml/Koopa)
![Stars](https://img.shields.io/github/stars/thuml/Koopa?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/Koopa?color=critical&style=social) | NIPS 2023
| Multivariable | GPVAR
METR-LA
PEMS-BAY
PEMS03
PEMS04
PEMS07
PEMS08
CER-E
AQI | TTS-IMP | [Taming Local Effects in Graph-based Spatiotemporal Forecasting](https://openreview.net/forum?id=x2PH6q32LR) | [Pytorch](https://github.com/Graph-Machine-Learning-Group/taming-local-effects-stgnns)
![Stars](https://img.shields.io/github/stars/Graph-Machine-Learning-Group/taming-local-effects-stgnns?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Graph-Machine-Learning-Group/taming-local-effects-stgnns?color=critical&style=social) | NIPS 2023
| Multivariable | PEMS08
AIR-BJ
AIR-GZ | CaST | [Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment](https://openreview.net/forum?id=17Zkztjlgt) | [Pytorch](https://github.com/yutong-xia/CaST)
![Stars](https://img.shields.io/github/stars/yutong-xia/CaST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yutong-xia/CaST?color=critical&style=social) | NIPS 2023
| Multivariable | PEMS08
METR-LA
NYC Taxi
NYC Bike | GPT-ST | [GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks](https://openreview.net/forum?id=nMH5cUaSj8) | [Pytorch](https://github.com/HKUDS/GPT-ST)
![Stars](https://img.shields.io/github/stars/HKUDS/GPT-ST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HKUDS/GPT-ST?color=critical&style=social) | NIPS 2023
| Multivariable | Solar
Wiki
Traffic
COVID-19 | FourierGNN | [FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective](https://proceedings.neurips.cc/paper_files/paper/2023/hash/dc1e32dd3eb381dbc71482f6a96cbf86-Abstract-Conference.html) | [Pytorch](https://github.com/aikunyi/FourierGNN)
![Stars](https://img.shields.io/github/stars/aikunyi/FourierGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/aikunyi/FourierGNN?color=critical&style=social) | NIPS 2023
| Multivariable | ETT
Weather
Electricity
Traffic | SimMTM | [SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling](https://proceedings.neurips.cc/paper_files/paper/2023/hash/5f9bfdfe3685e4ccdbc0e7fb29cccf2a-Abstract-Conference.html) | [Pytorch](https://github.com/thuml/SimMTM)
![Stars](https://img.shields.io/github/stars/thuml/SimMTM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/SimMTM?color=critical&style=social) | NIPS 2023
| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | BasisFormer | [BasisFormer: Attention-based Time Series Forecasting with Learnable and Interpretable Basis](https://proceedings.neurips.cc/paper_files/paper/2023/hash/e150e6d0a1e5214740c39c6e4503ba7a-Abstract-Conference.html) | [Pytorch](https://github.com/nzl5116190/Basisformer)
![Stars](https://img.shields.io/github/stars/nzl5116190/Basisformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/nzl5116190/Basisformer?color=critical&style=social) | NIPS 2023
| Irregular | Neonate
Traffic
MIMIC
StackOverflow
BookOrder
Exchange
ETT
ILI
Weather| ContiFormer | [ContiFormer: Continuous-Time Transformer for Irregular Time Series Modeling](https://proceedings.neurips.cc/paper_files/paper/2023/hash/9328208f88ec69420031647e6ff97727-Abstract-Conference.html) | [Pytorch](https://github.com/microsoft/SeqML/tree/main/ContiFormer) | NIPS 2023
| Multivariable | Electricity
Exchange
Traffic
Weather
ILI
ETT | SAN | [Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective](https://proceedings.neurips.cc/paper_files/paper/2023/hash/2e19dab94882bc95ed094c4399cfda02-Abstract-Conference.html) | [Pytorch](https://github.com/icantnamemyself/SAN)
![Stars](https://img.shields.io/github/stars/icantnamemyself/SAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/icantnamemyself/SAN?color=critical&style=social) | NIPS 2023
| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | DeepTime (Framework,
Fourier Features,
Meta-optimization)| [ Learning Deep Time-index Models for Time Series Forecasting](https://openreview.net/forum?id=pgcfCCNQXO) | [Pytorch](https://github.com/salesforce/DeepTime)
![Stars](https://img.shields.io/github/stars/salesforce/DeepTime?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/salesforce/DeepTime?color=critical&style=social) | ICML 2023
| Multivariable | Crime
CHI-Taxi
NYC-Bike
NYC-Taxi
CHI-House
NYC-House | GraphST | [Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation](https://openreview.net/forum?id=LVARH5wXM9) | [Pytorch](https://github.com/HKUDS/GraphST)
![Stars](https://img.shields.io/github/stars/HKUDS/GraphST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HKUDS/GraphST?color=critical&style=social) | ICML 2023
| Multivariable | Synthetic
Taxi
Electricity
Traffic | FeatureP (Feature Enhancement) | [Feature Programming for Multivariate Time Series Prediction](https://openreview.net/forum?id=LVARH5wXM9) | [Pytorch](https://github.com/SirAlex900/FeatureProgramming)
![Stars](https://img.shields.io/github/stars/SirAlex900/FeatureProgramming?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SirAlex900/FeatureProgramming?color=critical&style=social) | ICML 2023
| Multivariable | NorPool
Caiso
Weather
ETT
Wind
Traffic
Electricity
Exchange | TimeDiff | [Non-autoregressive Conditional Diffusion Models for Time Series Prediction](https://openreview.net/forum?id=wZsnZkviro) | None| ICML 2023
| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | MICN | [MICN: Multi-scale Local and Global Context Modeling for Long-term Series Forecasting](https://openreview.net/forum?id=zt53IDUR1U) | [Pytorch](https://github.com/wanghq21/MICN)
![Stars](https://img.shields.io/github/stars/wanghq21/MICN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/wanghq21/MICN?color=critical&style=social) | ICLR 2023
| Multivariable | ETT
Weather
Electricity
ILI
Traffic | Crossformer | [Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting](https://openreview.net/forum?id=vSVLM2j9eie) | [Pytorch](https://github.com/Thinklab-SJTU/Crossformer)
![Stars](https://img.shields.io/github/stars/Thinklab-SJTU/Crossformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Thinklab-SJTU/Crossformer?color=critical&style=social) | ICLR 2023
| Forecast
Imputation
Classifi
AnomalyDet | ETT
M4
Electricity
Weather
SMD,MSL
SMAP,SWaT
PSM | TimesNet | [TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis](https://openreview.net/forum?id=ju_Uqw384Oq) | [Pytorch](https://github.com/thuml/Time-Series-Library)
![Stars](https://img.shields.io/github/stars/thuml/Time-Series-Library?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/Time-Series-Library?color=critical&style=social) | ICLR 2023
| Multivariable | | Meta-SSM | [Sequential Latent Variable Models for Few-Shot High-Dimensional Time-Series Forecasting](https://openreview.net/forum?id=7C9aRX2nBf2) | [Pytorch](https://github.com/john-x-jiang/meta_ssm)
![Stars](https://img.shields.io/github/stars/john-x-jiang/meta_ssm?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/john-x-jiang/meta_ssm?color=critical&style=social) | ICLR 2023
| Multivariable | ETT
Electricity
Traffic
Weather | FSNet | [Learning Fast and Slow for Time Series Forecasting](https://openreview.net/forum?id=q-PbpHD3EOk) | [Pytorch](https://github.com/salesforce/fsnet)
![Stars](https://img.shields.io/github/stars/salesforce/fsnet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/salesforce/fsnet?color=critical&style=social) | ICLR 2023
| Robust
Multivariable | Traffic
Taxi
Wiki
Electricity | | [Robust Multivariate Time-Series Forecasting: Adversarial Attacks and Defense Mechanisms](https://openreview.net/forum?id=ctmLBs8lITa) | [Amazon](https://github.com/awslabs/gluonts/tree/dev/src/gluonts/nursery) | ICLR 2023
| Multivariable | Electricity
Crypto
M4
Traffic
Exchange | KNF | [Koopman Neural Operator Forecaster for Time-series with Temporal Distributional Shifts](https://openreview.net/forum?id=kUmdmHxK5N) | [Pytorch](https://github.com/google-research/google-research/tree/master/KNF)
![Stars](https://img.shields.io/github/stars/google-research/google-research/tree/master/KNF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/google-research/google-research/tree/master/KNF?color=critical&style=social) | ICLR 2023
| Multivariable | ETT
Weather
Electricity
Traffic
Exchange | SpaceTime | [Effectively Modeling Time Series with Simple Discrete State Spaces](https://openreview.net/forum?id=2EpjkjzdCAa) | [Pytorch](https://github.com/HazyResearch/spacetime)
![Stars](https://img.shields.io/github/stars/HazyResearch/spacetime?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HazyResearch/spacetime?color=critical&style=social) | ICLR 2023
| Multivariable | Weather
Traffic
Electricity
ILI
ETT | PatchTST | [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://openreview.net/forum?id=Jbdc0vTOcol) | [Pytorch](https://github.com/yuqinie98/PatchTST)
![Stars](https://img.shields.io/github/stars/yuqinie98/PatchTST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yuqinie98/PatchTST?color=critical&style=social) | ICLR 2023
| Multivariable | Exchange
Weather
Electricity
Traffic
ILI | Scaleformer | [Scaleformer: Iterative Multi-scale Refining Transformers for Time Series Forecasting](https://openreview.net/forum?id=sCrnllCtjoE) | [Pytorch](https://github.com/BorealisAI/scaleformer)
![Stars](https://img.shields.io/github/stars/BorealisAI/scaleformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/BorealisAI/scaleformer?color=critical&style=social) | ICLR 2023
| Multivariable
classification
AnomalyDec | Electricity
Weather
ETTm1
MSL
SMD
SMAP | SBT | [Sparse Binary Transformers for Multivariate Time Series Modeling](https://dl.acm.org/doi/abs/10.1145/3580305.3599508) | [Pytorch](https://github.com/mattgorb/sparse-binary-transformers)
![Stars](https://img.shields.io/github/stars/mattgorb/sparse-binary-transformers?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/mattgorb/sparse-binary-transformers?color=critical&style=social) | KDD 2023
| Multivariable | SIP
METR-LA
KnowAir
Electricity | CauSTG | [Maintaining the Status Quo: Capturing Invariant Relations for OOD Spatiotemporal Learning](https://dl.acm.org/doi/10.1145/3580305.3599529) | [Pytorch](https://github.com/zzyy0929/KDD23-CauSTG)
![Stars](https://img.shields.io/github/stars/zzyy0929/KDD23-CauSTG?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zzyy0929/KDD23-CauSTG?color=critical&style=social) | KDD 2023
| Robust
Multivariable | PEMS-BAY
PEMS04 | RDAT | [Robust Spatiotemporal Traffic Forecasting with Reinforced Dynamic Adversarial Training](https://dl.acm.org/doi/10.1145/3580305.3599492) | [Pytorch](https://github.com/usail-hkust/RDAT)
![Stars](https://img.shields.io/github/stars/usail-hkust/RDAT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/usail-hkust/RDAT?color=critical&style=social) | KDD 2023
| Multivariable | Beijing
Chengdu
Harbin | Frigate | [Frigate: Frugal Spatio-temporal Forecasting on Road Networks](https://dl.acm.org/doi/10.1145/3580305.3599357) | [Pytorch](https://github.com/idea-iitd/frigate)
![Stars](https://img.shields.io/github/stars/idea-iitd/frigate?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/idea-iitd/frigate?color=critical&style=social) | KDD 2023
|Multivariable | XC-Traffic
NYC-Traffic | GCIM | [Generative Causal Interpretation Model for Spatio-Temporal Representation Learning](https://doi.org/10.1145/3580305.3599363) | None | KDD 2023
| Multivariable | Tourism
Labour
Wiki
Flu-Symptoms
FB-Survey | PROFHiT | [When Rigidity Hurts: Soft Consistency Regularization for Probabilistic Hierarchical Time Series Forecasting](https://dl.acm.org/doi/10.1145/3580305.3599529) | [Pytorch](https://github.com/AdityaLab/Profhit)
![Stars](https://img.shields.io/github/stars/AdityaLab/Profhit?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/AdityaLab/Profhit?color=critical&style=social) | KDD 2023
| Multivariable
Under Miss | AQI-36
AQI
PEMS-BAY
CER-E
Healthcare
SMAP | MIDM | [An Observed Value Consistent Diffusion Model for Imputing Missing Values in Multivariate Time Series](https://doi.org/10.1145/3580305.3599257) | [Author](http://home.ustc.edu.cn/~wx309/) | KDD 2023
| Multivariable | PEMS03
PEMS04
PEMS07
PEMS08
etc.| Localised | [Localised Adaptive Spatial-Temporal Graph Neural Network](https://dl.acm.org/doi/10.1145/3580305.3599418) | None | KDD 2023
| Multivariable | PEMS3-Stream | PECPM | [Pattern Expansion and Consolidation on Evolving Graphs for Continual Traffic Prediction](https://doi.org/10.1145/3580305.3599463) | None | KDD 2023
| Multivariable | Tourism
Wiki
Traffic | HPO | [Hierarchical Proxy Modeling for Improved HPO in Time Series Forecasting](https://dl.acm.org/doi/10.1145/3580305.3599529) | None | KDD 2023
| Multivariable | Weather
Traffic
Electricity
ETT | TSMixer | [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://doi.org/10.1145/3580305.3599533) | None| KDD 2023
| Transfer
Traffic
Forecasting | PEMSD7M
PEMSD7M
METR-LA
PEMS-BAY | TransGTR | [Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities](https://dl.acm.org/doi/10.1145/3580305.3599529) | [Author](https://github.com/KL4805) | KDD 2023
| Multivariable | ETT
Traffic
Electricity
Exchange
Weather
ILI | DLinear | [Are Transformers Effective for Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/26317) | [Pytorch](https://github.com/cure-lab/LTSF-Linear)
![Stars](https://img.shields.io/github/stars/cure-lab/LTSF-Linear?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/cure-lab/LTSF-Linear?color=critical&style=social) | AAAI 2023
| Multivariable | METR-LA
PEMSD7M | STC-Dropout | [Easy Begun Is Half Done: Spatial-Temporal Graph Modeling with ST-Curriculum Dropout](https://ojs.aaai.org/index.php/AAAI/article/view/25590) | [Pytorch](https://github.com/Urban-Computing/STC-Dropout)
![Stars](https://img.shields.io/github/stars/Urban-Computing/STC-Dropout?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Urban-Computing/STC-Dropout?color=critical&style=social) | AAAI 2023
| Multivariable | BJ-Bike
NYC-Bike | STNSCM | [Spatio-Temporal Neural Structural Causal Models for Bike Flow Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/25542) | [Pytorch](https://github.com/EternityZY/STNSCM)
![Stars](https://img.shields.io/github/stars/EternityZY/STNSCM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/EternityZY/STNSCM?color=critical&style=social) | AAAI 2023
| Multivariable | XC-Trans
XC-Speed | CCHMM | [Causal Conditional Hidden Markov Model for Multimodal Traffic Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/25619) | [Pytorch](https://github.com/EternityZY/CCHMM)
![Stars](https://img.shields.io/github/stars/EternityZY/CCHMM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/EternityZY/CCHMM?color=critical&style=social) | AAAI 2023
| Multivariable | NYCBike1
NYCBike2
NYCTaxi
BJTaxi | ST-SSL | [Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/25555) | [Pytorch](https://github.com/Echo-Ji/ST-SSL)
![Stars](https://img.shields.io/github/stars/Echo-Ji/ST-SSL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Echo-Ji/ST-SSL?color=critical&style=social) | AAAI 2023
| Multivariable | PV-US
CER-En | SGP | [Scalable Spatiotemporal Graph Neural Networks](https://ojs.aaai.org/index.php/AAAI/article/view/25880) | [Pytorch](https://github.com/Graph-Machine-Learning-Group/sgp)
![Stars](https://img.shields.io/github/stars/Graph-Machine-Learning-Group/sgp?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Graph-Machine-Learning-Group/sgp?color=critical&style=social) | AAAI 2023
| Multivariable | Electricity
Solar
PEMS-BAY
METR-LA | SRD | [Learning Decomposed Spatial Relations for Multi-Variate Time-Series Modeling](https://ojs.aaai.org/index.php/AAAI/article/view/25915) | [Pytorch](https://github.com/Arthur-Null/SRD)
![Stars](https://img.shields.io/github/stars/Arthur-Null/SRD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Arthur-Null/SRD?color=critical&style=social) | AAAI 2023
| Multivariable | ETT
Electricity | InfoTS | [Time Series Contrastive Learning with Information-Aware Augmentations](https://ojs.aaai.org/index.php/AAAI/article/view/25575) | [Pytorch](https://github.com/chengw07/InfoTS)
![Stars](https://img.shields.io/github/stars/chengw07/InfoTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/chengw07/InfoTS?color=critical&style=social) | AAAI 2023
| Multivariable | PhysioNet
MIMIC-III
Activity
Appliances Energy | PrimeNet | [PrimeNet: Pre-training for Irregular Multivariate Time Series](https://ojs.aaai.org/index.php/AAAI/article/view/25876) | [Pytorch](https://github.com/ranakroychowdhury/PrimeNet)
![Stars](https://img.shields.io/github/stars/ranakroychowdhury/PrimeNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ranakroychowdhury/PrimeNet?color=critical&style=social) | AAAI 2023
| Multivariable | Electricity
ETT
Weather | Dish-TS | [Dish-TS: A General Paradigm for Alleviating Distribution Shift in Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/25914) | [Pytorch](https://github.com/weifantt/Dish-TS)
![Stars](https://img.shields.io/github/stars/weifantt/Dish-TS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/weifantt/Dish-TS?color=critical&style=social) | AAAI 2023
| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | NHITS | [NHITS: Neural Hierarchical Interpolation for Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/25854) | [Pytorch](https://github.com/Nixtla/neuralforecast)
![Stars](https://img.shields.io/github/stars/Nixtla/neuralforecast?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Nixtla/neuralforecast?color=critical&style=social) | AAAI 2023
| Multivariable | METR-LA
ETT
Weather | MegaCRN | [Spatio-Temporal Meta-Graph Learning for Traffic Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/25976) | [Pytorch](https://github.com/deepkashiwa20/MegaCRN)
![Stars](https://img.shields.io/github/stars/deepkashiwa20/MegaCRN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/deepkashiwa20/MegaCRN?color=critical&style=social) | AAAI 2023
| Multivariable | Santa
Traffic | NEC+ | [An Extreme-Adaptive Time Series Prediction Model Based on Probability-Enhanced LSTM Neural Networks](https://ojs.aaai.org/index.php/AAAI/article/view/26276) | [Pytorch](https://github.com/davidanastasiu/NECPlus)
![Stars](https://img.shields.io/github/stars/davidanastasiu/NECPlus?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/davidanastasiu/NECPlus?color=critical&style=social) | AAAI 2023
| Extreme MTSF | Electricity
Solar
Weather
Traffic | WaveForM | [WaveForM: Graph Enhanced Wavelet Learning for Long Sequence Forecasting of Multivariate Time Series](https://ojs.aaai.org/index.php/AAAI/article/view/26276) | [Pytorch](https://github.com/alanyoungCN/WaveForM)
![Stars](https://img.shields.io/github/stars/alanyoungCN/WaveForM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/alanyoungCN/WaveForM?color=critical&style=social) | AAAI 2023
| Multivariable | PEMS04
PEMS07
PEMS08
NYCTaxi
CHBike
TDrive | PDFormer | [PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for Traffic Flow Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/25556) | [Pytorch](https://github.com/BUAABIGSCity/PDFormer)
![Stars](https://img.shields.io/github/stars/BUAABIGSCity/PDFormer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/BUAABIGSCity/PDFormer?color=critical&style=social) | AAAI 2023
| Multivariable | AmapBeijing
AmapChengdu | STGNPP | [Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/26669) | None | AAAI 2023
| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | InParformer | [InParformer: Evolutionary Decomposition Transformers with Interactive Parallel Attention for Long-Term Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/25845) | None | AAAI 2023
| Multivariable | Tourism
Labour
M5 | SLOTH | [SLOTH: Structured Learning and Task-Based Optimization for Time Series Forecasting on Hierarchies](https://ojs.aaai.org/index.php/AAAI/article/view/26350) | None | AAAI 2023
| Multivariable | Wind
Solar | eForecaster | [eForecaster: Unifying Electricity Forecasting with Robust, Flexible, and Explainable Machine Learning Algorithms](https://ojs.aaai.org/index.php/AAAI/article/view/26853) | None | AAAI 2023
| Multivariable | NYCTaxi
PEMS04 | AutoSTL | [AutoSTL: Automated Spatio-Temporal Multi-Task Learning](https://ojs.aaai.org/index.php/AAAI/article/view/25616) | None | AAAI 2023
| Multivariable | METR-LA
PEMS-BAY | Trafformer | [Trafformer: Unify Time and Space in Traffic Prediction](https://doi.org/10.1609/aaai.v37i7.25980) | None| AAAI 2023
| Multivariable | Electricity
PM2.5
Exchange | DeLELSTM | [DeLELSTM: Decomposition-based Linear Explainable LSTM to Capture Instantaneous and Long-term Effects in Time Series](https://www.ijcai.org/proceedings/2023/478) | [Pytorch](https://github.com/wangcq01/DeLELSTM)
![Stars](https://img.shields.io/github/stars/wangcq01/DeLELSTM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/wangcq01/DeLELSTM?color=critical&style=social) | IJCAI 2023
| Multivariable | NYC-Bike
PEMS-BAY
PEMS08 | ReMo | [Not Only Pairwise Relationships: Fine-Grained Relational Modeling for Multivariate Time Series Forecasting](https://www.ijcai.org/proceedings/2023/491) | [Pytorch](https://github.com/beginner-sketch/gmrl)
![Stars](https://img.shields.io/github/stars/beginner-sketch/gmrl?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/beginner-sketch/gmrl?color=critical&style=social) | IJCAI 2023
| Multivariable | NASA | MetePFL | [Prompt Federated Learning for Weather Forecasting: Toward Foundation Models on Meteorological Data](https://www.ijcai.org/proceedings/2023/393) | [Pytorch](https://github.com/shengchaochen82/MetePFL)
![Stars](https://img.shields.io/github/stars/shengchaochen82/MetePFL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/shengchaochen82/MetePFL?color=critical&style=social) | IJCAI 2023
| Multivariable | Hurricane
Climate | Self-Recover | [Self-Recover: Forecasting Block Maxima in Time Series from Predictors with Disparate Temporal Coverage Using Self-Supervised Learning](https://www.ijcai.org/proceedings/2023/4141) | None | IJCAI 2023
| Multivariable | Weather
Traffc
Electricity
Exchange
ILI | SMARTformer | [SMARTformer: Semi-Autoregressive Transformer with Efficient Integrated Window Attention for Long Time Series Forecasting](https://www.ijcai.org/proceedings/2023/241) | None| IJCAI 2023
| Multivariable | METR-LA
Beijing
Xiamen | INCREASE | [INCREASE: Inductive Graph Representation Learning for Spatio-Temporal Kriging](https://dl.acm.org/doi/abs/10.1145/3543507.3583525) | [TF](https://github.com/zhengchuanpan/INCREASE)
![Stars](https://img.shields.io/github/stars/zhengchuanpan/INCREASE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhengchuanpan/INCREASE?color=critical&style=social) | WWW 2023
| Multivariable | MQPS
ETT
Electricity | KAE-Informer | [KAE-Informer: A Knowledge Auto-Embedding Informer for Forecasting Long-Term Workloads of Microservices](https://doi.org/10.1145/3543507.3583288) | [Pytorch](https://github.com/citsjtu2020/KAE-Informer-MQPS)
![Stars](https://img.shields.io/github/stars/citsjtu2020/KAE-Informer-MQPS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/citsjtu2020/KAE-Informer-MQPS?color=critical&style=social) | WWW 2023
| Multivariable | Typhoon-JP
COVID-JP
Hurricane-US | MemeSTN | [Learning Social Meta-knowledge for Nowcasting Human Mobility in Disaster](https://doi.org/10.1145/3543507.3583991) | [Pytorch](https://github.com/citsjtu2020/KAE-Informer-MQPS)
![Stars](https://img.shields.io/github/stars/citsjtu2020/KAE-Informer-MQPS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/citsjtu2020/KAE-Informer-MQPS?color=critical&style=social) | WWW 2023
| Multivariable | NYC
Chicago | EALGAP | [Extreme-Aware Local-Global Attention for Spatio-Temporal Urban Mobility Learning](https://ieeexplore.ieee.org/document/10184645) | [Keras](https://github.com/HuiqunHuang/EALGAP)
![Stars](https://img.shields.io/github/stars/HuiqunHuang/EALGAP?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HuiqunHuang/EALGAP?color=critical&style=social) | ICDE 2023
| Multivariable | PEMS03
PEMS04
PEMS07
PEMS08 | DyHSL | [Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting](https://ieeexplore.ieee.org/document/10184800) | [Pytorch](https://github.com/YushengZhao/DyHSL)
![Stars](https://img.shields.io/github/stars/YushengZhao/DyHSL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/YushengZhao/DyHSL?color=critical&style=social) | ICDE 2023
| Multivariable | PEMS03
PEMS04
PEMS07
PEMS08 | STWave | [When Spatio-Temporal Meet Wavelets: Disentangled Traffic Forecasting via Efficient Spectral Graph Attention Networks](https://ieeexplore.ieee.org/document/10184591) | [Pytorch](https://github.com/LMissher/STWave)
![Stars](https://img.shields.io/github/stars/LMissher/STWave?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LMissher/STWave?color=critical&style=social) | ICDE 2023
| Multivariable | Seattle
PEMS04
PEMS08 | SSTBAN | [Self-Supervised Spatial-Temporal Bottleneck Attentive Network for Efficient Long-term Traffic Forecasting](https://ieeexplore.ieee.org/document/10184658) | [Pytorch](https://github.com/guoshnBJTU/SSTBAN)
![Stars](https://img.shields.io/github/stars/guoshnBJTU/SSTBAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/guoshnBJTU/SSTBAN?color=critical&style=social) | ICDE 2023
| Multivariable | PEMSD4
PEMSD8
AirBJ
TrafficSIP | MGTF | [A Multi-graph Fusion Based Spatiotemporal Dynamic Learning Framework](https://dl.acm.org/doi/10.1145/3539597.3570396) | [Author](http://home.ustc.edu.cn/~wx309/) | WSDM 2023
| Multivariable | METR-LA
PEMS-BAY
PEMS04
PEMS07
PEMS08| STAEformer | [Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting](https://dl.acm.org/doi/10.1145/3583780.3615136) | [Pytorch](https://github.com/XDZhelheim/STAEformer)
![Stars](https://img.shields.io/github/stars/XDZhelheim/STAEformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/XDZhelheim/STAEformer?color=critical&style=social) | CIKM 2023
| Traffic | PEMS03
PEMS04
PEMS07
PEMS08 | TrendGCN | [Enhancing the Robustness via Adversarial Learning and Joint Spatial-Temporal Embeddings in Traffic Forecasting](https://dl.acm.org/doi/10.1145/3583780.3614868) | [Pytorch](https://github.com/juyongjiang/TrendGCN)
![Stars](https://img.shields.io/github/stars/juyongjiang/TrendGCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/juyongjiang/TrendGCN?color=critical&style=social) | CIKM 2023
| Multivariable | ETT
Electricity
Traffic
Weather
ILI
Exchange | GCformer | [GCformer: An Efficient Solution for Accurate and Scalable Long-Term Multivariate Time Series Forecasting](https://dl.acm.org/doi/10.1145/3583780.3614868) | [Pytorch](https://github.com/Yanjun-Zhao/GCformer)
![Stars](https://img.shields.io/github/stars/Yanjun-Zhao/GCformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Yanjun-Zhao/GCformer?color=critical&style=social) | CIKM 2023
| Multivariable | ETT
Electricity
Traffic | Seq2Peak | [Unlocking the Potential of Deep Learning in Peak-Hour Series Forecasting](https://dl.acm.org/doi/abs/10.1145/3583780.3615159) | [Pytorch](https://github.com/zhangzw16/Seq2Peak)
![Stars](https://img.shields.io/github/stars/zhangzw16/Seq2Peak?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhangzw16/Seq2Peak?color=critical&style=social) | CIKM 2023
| Multivariable | PEMS04
PEMS07
PEMS08
NYC Crime
CHI Crime | CL4ST | [Spatio-Temporal Meta Contrastive Learning](https://dl.acm.org/doi/10.1145/3583780.3615065) | [Pytorch](https://github.com/HKUDS/CL4ST)
![Stars](https://img.shields.io/github/stars/HKUDS/CL4ST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HKUDS/CL4ST?color=critical&style=social) | CIKM 2023
| Multivariable | NYC Bike
NYC Taxi | MLPST | [MLPST: MLP is All You Need for Spatio-Temporal Prediction](https://dl.acm.org/doi/10.1145/3583780.3614969) | [Author](https://github.com/Zhang-Zijian) | CIKM 2023
| Multivariable | TaxiBJ
BikeNYC | MC-STL | [Mask- and Contrast-Enhanced Spatio-Temporal Learning for Urban Flow Prediction](https://dl.acm.org/doi/10.1145/3583780.3614958) | [Pytorch](https://github.com/CodeZx6/MCSTL)
![Stars](https://img.shields.io/github/stars/CodeZx6/MCSTL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/CodeZx6/MCSTL?color=critical&style=social) | CIKM 2023
| Multivariable | PeMS
Beijing
Electricity
COVID-CHI | MemDA | [MemDA: Forecasting Urban Time Series with Memory-based Drift Adaptation](https://dl.acm.org/doi/10.1145/3583780.3615136) | [Pytorch](https://github.com/deepkashiwa20/Urban_Concept_Drift)
![Stars](https://img.shields.io/github/stars/deepkashiwa20/Urban_Concept_Drift?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/deepkashiwa20/Urban_Concept_Drift?color=critical&style=social) | CIKM 2023
| Cross City
Traffic | PEMS-BAY
METR-LA
Chengdu
Shenzhen| TPB | [Cross-city Few-Shot Traffic Forecasting via Traffic Pattern Bank](https://dl.acm.org/doi/10.1145/3583780.3614829) | [Pytorch](https://github.com/zhyliu00/TPB)
![Stars](https://img.shields.io/github/stars/zhyliu00/TPB?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhyliu00/TPB?color=critical&style=social) | CIKM 2023
| Traffic Speed | METR-LA
PEMS-BAY
PEMSD7M | UAGCRN | [Enhancing Spatio-temporal Traffic Prediction through Urban Human Activity Analysis](https://dl.acm.org/doi/10.1145/3583780.3614867) | [TF](https://github.com/SuminHan/Traffic-UAGCRNTF)
![Stars](https://img.shields.io/github/stars/SuminHan/Traffic-UAGCRNTF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SuminHan/Traffic-UAGCRNTF?color=critical&style=social) | CIKM 2023
| Multivariable | Complaint
NYC Taxi | PromptST | [PromptST: Prompt-Enhanced Spatio-Temporal Multi-Attribute Prediction](https://dl.acm.org/doi/abs/10.1145/3583780.3615159) | [Pytorch](https://github.com/Zhang-Zijian/PromptST)
![Stars](https://img.shields.io/github/stars/Zhang-Zijian/PromptST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Zhang-Zijian/PromptST?color=critical&style=social) | CIKM 2023
| Multivariable | METR-LA
PEMS-BAY
PEMS08 | HIEST | [Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic Forecasting](https://dl.acm.org/doi/10.1145/3583780.3614910) | [Pytorch](https://github.com/VAN-QIAN/CIKM23-HIEST)
![Stars](https://img.shields.io/github/stars/VAN-QIAN/CIKM23-HIEST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/VAN-QIAN/CIKM23-HIEST?color=critical&style=social) | CIKM 2023
| Multivariable | ETT
Electricity
Weather
Traffic | TemDep | [TemDep: Temporal Dependency Priority for Multivariate Time Series Prediction](https://dl.acm.org/doi/10.1145/3583780.3615164) | [Pytorch](https://github.com/zivgogogo/TemDep)
![Stars](https://img.shields.io/github/stars/zivgogogo/TemDep?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zivgogogo/TemDep?color=critical&style=social) | CIKM 2023
| Traffic | BJ-Center
METR-LA | ST-MoE | [ST-MoE: Spatio-Temporal Mixture-of-Experts for Debiasing in Traffic Prediction](https://dl.acm.org/doi/10.1145/3583780.3615068) | None | CIKM 2023
| Multivariable | ETT
Electricity
Weather
Traffic
Exchange | AVGNets | [Learning Visibility Attention Graph Representation for Time Series Forecasting](https://dl.acm.org/doi/abs/10.1145/3583780.3615289) | None | CIKM 2023
| Multivariable | PEMS03
PEMS04
PEMS07
PEMS08 | STGBN | [Spatial-Temporal Graph Boosting Networks: Enhancing Spatial-Temporal Graph Neural Networks via Gradient Boosting](https://dl.acm.org/doi/10.1145/3583780.3615066) | None | CIKM 2023
| Multivariable | ETT
Electricity
Traffic
ILI
Exchange | FAMC-Net | [FAMC-Net: Frequency Domain Parity Correction Attention and Multi-Scale Dilated Convolution for Time Series Forecasting](https://dl.acm.org/doi/10.1145/3583780.3614876) | None| CIKM 2023
| Cross City
Traffic | NYC
Chicago
Nashville | CARPG | [CARPG: Cross-City Knowledge Transfer for Traffic Accident Prediction via Attentive Region-Level Parameter Generation](https://dl.acm.org/doi/abs/10.1145/3583780.3614802) | None| CIKM 2023
| Traffic | SPEED
FLOW | CANet | [Clustering-property Matters: A Cluster-aware Network for Large Scale Multivariate Time Series Forecasting](https://dl.acm.org/doi/abs/10.1145/3583780.3615253) | None | CIKM 2023
| Multivariable | ETT
Exchange
ILI
Weather
Electricity
Traffic | DSformer | [DSformer: A Double Sampling Transformer for Multivariate Time Series Long-term Prediction](https://dl.acm.org/doi/abs/10.1145/3583780.3614851) | None | CIKM 2023
| Multivariable | Wufu | MODE | [Monotonic Neural Ordinary Differential Equation: Time-series Forecasting for Cumulative Data](https://dl.acm.org/doi/10.1145/3583780.3615487) | None | CIKM 2023
| Multivariable | NYC | MetaRSTP | [Region Profile Enhanced Urban Spatio-Temporal Prediction via Adaptive Meta-Learning](https://dl.acm.org/doi/10.1145/3583780.3615027) | None | CIKM 2023
| Multivariable | SIP
NYC
METR-LA | G2S | [Towards Learning in Grey Spatiotemporal Systems: A Prophet to Non-consecutive Spatiotemporal Dynamics](https://epubs.siam.org/doi/abs/10.1137/1.9781611977653.ch22) | None | SDM 2023
| Multivariable | Solar
PEMS-BAY
Electricity | ERL | [Time-delayed Multivariate Time Series Predictions](https://epubs.siam.org/doi/abs/10.1137/1.9781611977653.ch37) | None | SDM 2023
| Multivariable | Weather2K | Weather2K | [Weather2K: A Multivariate Spatio-Temporal Benchmark Dataset for Meteorological Forecasting Based on Real-Time Observation Data from Ground Weather Stations](https://proceedings.mlr.press/v206/zhu23a.html) | [Weather2K](https://github.com/bycnfz/weather2k/)
![Stars](https://img.shields.io/github/stars/bycnfz/weather2k?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/bycnfz/weather2k?color=critical&style=social) | AISTATS 2023
| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | FiLM | [FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting](https://openreview.net/forum?id=zTQdHSQUQWc) | [Pytorch](https://github.com/tianzhou2011/FiLM)
![Stars](https://img.shields.io/github/stars/tianzhou2011/FiLM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tianzhou2011/FiLM?color=critical&style=social) | NeurIPS 2022
| Multivariable | ETT
Electricity
Exchange
Weather | LaST | [Learning Latent Seasonal-Trend Representations for Time Series Forecasting](https://openreview.net/forum?id=C9yUwd72yy) | [Pytorch](https://github.com/zhycs/LaST)
![Stars](https://img.shields.io/github/stars/zhycs/LaST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhycs/LaST?color=critical&style=social) | NeurIPS 2022
| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | WaveBound | [WaveBound: Dynamic Error Bounds for Stable Time Series Forecasting](https://openreview.net/forum?id=vsNQkquutZk) | [Pytorch](https://github.com/choyi0521/WaveBound)
![Stars](https://img.shields.io/github/stars/choyi0521/WaveBound?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/choyi0521/WaveBound?color=critical&style=social) | NeurIPS 2022
| Multivariable | COVID-19
PEMS04
PEMS08
Temperature
Bytom
Wind | ZFC-SHCN | [Time-Conditioned Dances with Simplicial Complexes: Zigzag Filtration Curve based Supra-Hodge Convolution Networks for Time-series Forecasting](https://openreview.net/forum?id=2Ln-TWxVtf) | [Future](https://github.com/zfcshcn/ZFC-SHCN) | NeurIPS 2022
| Multivariable | ETT
Traffic
Solar
Electricity
Exchange
PEMS03
PEMS04
PEMS07
PEMS08 | SCINet | [SCINet: Time Series Modeling and Forecasting with Sample Convolution and Interaction](https://openreview.net/forum?id=AyajSjTAzmg) | [Pytorch](https://github.com/cure-lab/SCINet)
![Stars](https://img.shields.io/github/stars/cure-lab/SCINet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/cure-lab/SCINet?color=critical&style=social) | NeurIPS 2022
| Multivariable | Electricity
ETT
Exchange
ILI
Traffic
Weather | NonstaTransformer | [Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting](https://openreview.net/forum?id=ucNDIDRNjjv) | [Pytorch](https://github.com/thuml/Nonstationary_Transformers)
![Stars](https://img.shields.io/github/stars/thuml/Nonstationary_Transformers?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/Nonstationary_Transformers?color=critical&style=social) | NeurIPS 2022
| Multivariable | Traffic
Solar
Electricity
Exchange
PEMS07(M)
PEMS-BAY | TPGNN | [Multivariate Time-Series Forecasting with Temporal Polynomial Graph Neural Networks](https://openreview.net/forum?id=pMumil2EJh) | [Future](https://github.com/zyplanet/TPGNN) | NeurIPS 2022
| Multivariable | PEMS03
PEMS04
PEMS07
PEMS08 | DSTAGNN | [DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Network for Traffic Flow Forecasting](https://proceedings.mlr.press/v162/lan22a.html) | [Pytorch](https://github.com/SYLan2019/DSTAGNN)
![Stars](https://img.shields.io/github/stars/SYLan2019/DSTAGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SYLan2019/DSTAGNN?color=critical&style=social) | ICML 2022
| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | FEDformer
(EncDec,
EnhancedFeature) | [FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting](https://proceedings.mlr.press/v162/zhou22g.html) | [Pytorch](https://github.com/MAZiqing/FEDformer)
![Stars](https://img.shields.io/github/stars/MAZiqing/FEDformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/MAZiqing/FEDformer?color=critical&style=social) | ICML 2022
| Multivariable | Traffic
Electricity
Wiki
Sales | DAF | [DAF-Domain Adaptation for Time Series Forecasting via Attention Sharing](https://proceedings.mlr.press/v162/jin22d.html) | None| ICML 2022
| Multivariable | Electricity
Solar
Fred MD
KDD Cup | TACTiS
(Copulas,
Trans) | [TACTiS: Transformer-Attentional Copulas for Time Series](https://proceedings.mlr.press/v162/drouin22a.html) | [Pytorch](https://github.com/servicenow/tactis)
![Stars](https://img.shields.io/github/stars/servicenow/tactis?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/servicenow/tactis?color=critical&style=social) | ICML 2022
| Multivariable | French
Electricity | AgACI | [Adaptive Conformal Predictions for Time Series](https://arxiv.org/abs/2202.07282) | [Python,R](https://github.com/mzaffran/AdaptiveConformalPredictionsTimeSeries)
![Stars](https://img.shields.io/github/stars/mzaffran/AdaptiveConformalPredictionsTimeSeries?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/mzaffran/AdaptiveConformalPredictionsTimeSeries?color=critical&style=social) | ICML 2022
| Traffic Speed | NAVER-Seoul
METR-LA | PM-MemNet
(Mem,KNN) | [Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic Forecasting](https://openreview.net/forum?id=wwDg3bbYBIq) | [Pytorch](https://github.com/HyunWookL/PM-MemNet)
![Stars](https://img.shields.io/github/stars/HyunWookL/PM-MemNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HyunWookL/PM-MemNet?color=critical&style=social) | ICLR 2022
| Multivariable | PEMS03
PEMS04
PEMS08
COVID-19,etc | TAMP-S2GCNets
(GCN,AR,
Topological Features) | [TAMP-S2GCNets: Coupling Time-Aware Multipersistence Knowledge Representation with Spatio-Supra Graph Convolutional Networks for Time-Series Forecasting](https://openreview.net/forum?id=wv6g8fWLX2q) | [Pytorch](https://www.dropbox.com/sh/n0ajd5l0tdeyb80/AABGn-ejfV1YtRwjf_L0AOsNa?dl=0) | ICLR 2022
| Multivariable | ETT
Electricity
Weather | CoST | [CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for Time Series Forecasting](https://openreview.net/forum?id=PilZY3omXV2) | [Pytorch](https://github.com/salesforce/CoST)
![Stars](https://img.shields.io/github/stars/salesforce/CoST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/salesforce/CoST?color=critical&style=social) | ICLR 2022
| Multivariable | Electricity
Traffic
M4
CASIO
NP | DEPTS | [DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting](https://openreview.net/forum?id=AJAR-JgNw__) | [Pytorch](https://github.com/weifantt/DEPTS)
![Stars](https://img.shields.io/github/stars/weifantt/DEPTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/weifantt/DEPTS?color=critical&style=social) | ICLR 2022
| Multivariable | ETT
Electricity
Wind
App Flow | Pyraformer | [Pyraformer: Low-Complexity Pyramidal Attention for Long-Range Time Series Modeling and Forecasting](https://openreview.net/forum?id=0EXmFzUn5I) | [Pytorch](https://github.com/alipay/Pyraformer)
![Stars](https://img.shields.io/github/stars/alipay/Pyraformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/alipay/Pyraformer?color=critical&style=social) | ICLR 2022
| Multivariable | ETT
Electricity
M4
Air Quality
Nasdaq | RevIN | [Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift](https://openreview.net/forum?id=cGDAkQo1C0p) | [Pytorch](https://github.com/ts-kim/RevIN)
![Stars](https://img.shields.io/github/stars/ts-kim/RevIN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ts-kim/RevIN?color=critical&style=social) | ICLR 2022
| Multivariable | METR-LA
PEMS-BAY
PEMS04
PEMS08 | D2STGNN | [Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting](https://www.vldb.org/pvldb/vol15/p2733-shao.pdf) | [Pytorch](https://github.com/zezhishao/D2STGNN)
![Stars](https://img.shields.io/github/stars/zezhishao/D2STGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zezhishao/D2STGNN?color=critical&style=social) | VLDB 2022
| Multivariable | METR-LA
PEMS-BAY
PEMS04 | STEP | [Pre-training Enhanced Spatial-temporal Graph Neural Network for Multivariate Time Series Forecasting](https://doi.org/10.1145/3534678.3539396) | [Pytorch](https://github.com/zezhishao/STEP)
![Stars](https://img.shields.io/github/stars/zezhishao/STEP?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zezhishao/STEP?color=critical&style=social) | KDD 2022
| Multivariable | Solar
Electricity
Exchange
Wind
NYCBike
NYCTaxi | ESG | [Learning the Evolutionary and Multi-scale Graph Structure for Multivariate Time Series Forecasting](https://doi.org/10.1145/3534678.3539274) | [Pytorch](https://github.com/LiuZH-19/ESG)
![Stars](https://img.shields.io/github/stars/LiuZH-19/ESG?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LiuZH-19/ESG?color=critical&style=social) | KDD 2022
| Multivariable | METR-LA
Solar
Traffic
ECG5000 | VSF | [Multi-Variate Time Series Forecasting on Variable Subsets](https://doi.org/10.1145/3534678.3539394) | [Pytorch,dgl](https://github.com/google/vsf-time-series)
![Stars](https://img.shields.io/github/stars/google/vsf-time-series?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/google/vsf-time-series?color=critical&style=social) | KDD 2022
| Multivariable | DC Bike
DC Taxi | CrossTReS | [Selective Cross-City Transfer Learning for Traffic Prediction via Source City Region Re-Weighting](https://doi.org/10.1145/3534678.3539250) | [Pytorch,dgl](https://github.com/KL4805/CrossTReS)
![Stars](https://img.shields.io/github/stars/KL4805/CrossTReS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/KL4805/CrossTReS?color=critical&style=social) | KDD 2022
| Multivariable | ETT
Weather
Exchange
Traffic
Electricity | Quatformer | [Learning to Rotate: Quaternion Transformer for Complicated Periodical Time Series Forecasting](https://doi.org/10.1145/3534678.3539234) | [MRA-BGCN Author](https://scholar.google.com/citations?hl=zh-CN&user=dMg_soMAAAAJ&view_op=list_works&sortby=pubdate)
None Code | KDD 2022
| Multivariable | NYCBike
NYCTaxi
PEMS03
PEMS08 | GMSDR | [MSDR: Multi-Step Dependency Relation Networks for Spatial Temporal Forecasting](https://doi.org/10.1145/3534678.3539397) | [Pytorch](https://github.com/dcliu99/MSDR)
![Stars](https://img.shields.io/github/stars/dcliu99/MSDR?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/dcliu99/MSDR?color=critical&style=social) | KDD 2022
| Multivariable | Hangzhou
NYC | DTIGNN | [Modeling Network-level Traffic Flow Transitions on Sparse Data](https://doi.org/10.1145/3534678.3539236) | [Pytorch](https://github.com/shawlen/dtignn)
![Stars](https://img.shields.io/github/stars/shawlen/dtignn?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/shawlen/dtignn?color=critical&style=social) | KDD 2022
| Multivariable | Temperature
Cloud cover
Humidity
Wind | CLCRN | [Conditional Local Convolution for Spatio-temporal Meteorological Forecasting](https://aaai-2022.virtualchair.net/poster_aaai1716) | [Pytorch](https://github.com/BIRD-TAO/CLCRN)
![Stars](https://img.shields.io/github/stars/BIRD-TAO/CLCRN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/BIRD-TAO/CLCRN?color=critical&style=social) | AAAI 2022
| Traffic Flow | PEMS03
PEMS04
PEMS07
PEMS08
PEMS07(M)
PEMS07(L) | STG-NCDE | [Graph Neural Controlled Differential Equations for Traffic Forecasting](https://aaai-2022.virtualchair.net/poster_aaai6502) | [Pytorch](https://github.com/jeongwhanchoi/STG-NCDE)
![Stars](https://img.shields.io/github/stars/jeongwhanchoi/STG-NCDE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/jeongwhanchoi/STG-NCDE?color=critical&style=social) | AAAI 2022
| Traffic Flow | GT-221
WRS-393
ZGC-564 | STDEN | [STDEN: Towards Physics-guided Neural Networks for Traffic Flow Prediction](https://aaai-2022.virtualchair.net/poster_aaai211) | [Pytorch](https://github.com/Echo-Ji/STDEN)
![Stars](https://img.shields.io/github/stars/Echo-Ji/STDEN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Echo-Ji/STDEN?color=critical&style=social) | AAAI 2022
| Multivariable | Electricity
Traffic
PEMS07(M)
METR-LA | CATN | [CATN: Cross Attentive Tree-Aware Network for Multivariate Time Series Forecasting](https://aaai-2022.virtualchair.net/poster_aaai7403) | None | AAAI 2022
| Multivariable | ETT
Electricity | TS2Vec | [TS2Vec: Towards Universal Representation of Time Series](https://aaai-2022.virtualchair.net/poster_aaai8809) | [Pytorch](https://github.com/yuezhihan/ts2vec)
![Stars](https://img.shields.io/github/stars/yuezhihan/ts2vec?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yuezhihan/ts2vec?color=critical&style=social) | AAAI 2022
| Multivariable | ETT
Electricity
Weather | Triformer | [Triformer: Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting--Full Version](https://doi.org/10.24963/ijcai.2022/277) | [Pytorch](https://github.com/razvanc92/triformer)
![Stars](https://img.shields.io/github/stars/razvanc92/triformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/razvanc92/triformer?color=critical&style=social) | IJCAI 2022
| Multivariable | PEMS03
PEMS04
PEMS07
PEMS08 | FOGS | [FOGS: First-Order Gradient Supervision with Learning-based Graph for Traffic Flow Forecasting](https://doi.org/10.24963/ijcai.2022/545) | [Pytorch](https://github.com/kevin-xuan/FOGS)
![Stars](https://img.shields.io/github/stars/kevin-xuan/FOGS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/kevin-xuan/FOGS?color=critical&style=social) | IJCAI 2022
| Multivariable | PEMS04
PEMS08
RPCM | RGSL | [Regularized Graph Structure Learning with Semantic Knowledge for Multi-variates Time-Series Forecasting](https://doi.org/10.24963/ijcai.2022/328) | [Pytorch](https://github.com/alipay/RGSL)
![Stars](https://img.shields.io/github/stars/alipay/RGSL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/alipay/RGSL?color=critical&style=social) | IJCAI 2022
| Multivariable | Air Quality
Parking | DMGA | [Long-term Spatio-Temporal Forecasting via Dynamic Multiple-Graph Attention](https://doi.org/10.24963/ijcai.2022/309) | None | IJCAI 2022
| Multivariable | YellowCab
GreenCab
Solar | ST-KMRN | [Physics-Informed Long-Sequence Forecasting From Multi-Resolution Spatiotemporal Data](https://doi.org/10.24963/ijcai.2022/304) | [Author](https://github.com/mengcz13) | IJCAI 2022
| Multivariable | NYCTaxi
NYCBike
CHIBike
BJTaxi
Chengdu| STAN | [When Transfer Learning Meets Cross-City Urban Flow Prediction: Spatio-Temporal Adaptation Matters](https://doi.org/10.24963/ijcai.2022/282) | None | IJCAI 2022
| Multivariable | Hurricanes
Ausgrid
Weather | DeepExtrema | [DeepExtrema: A Deep Learning Approach for Forecasting Block Maxima in Time Series Data](https://doi.org/10.24963/ijcai.2022/413) | [Pytorch](https://github.com/galib19/DeepExtrema-IJCAI22-)
![Stars](https://img.shields.io/github/stars/galib19/DeepExtrema-IJCAI22-?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/galib19/DeepExtrema-IJCAI22-?color=critical&style=social) | IJCAI 2022
| Multivariable | GoogleSymptoms
Covid19
Power
Tweet | CAMul | [CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting](https://doi.org/10.1145/3485447.3512037) | [Pytorch](https://github.com/AdityaLab/CAMul)
![Stars](https://img.shields.io/github/stars/AdityaLab/CAMul?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/AdityaLab/CAMul?color=critical&style=social) | WWW 2022
| Multivariable | Electricity
Stock | MRLF | [Multi-Granularity Residual Learning with Confidence Estimation for Time Series Prediction](https://doi.org/10.1145/3485447.3512056) | [Pytorch](https://github.com/CMLF-git-dev/MRLF)
![Stars](https://img.shields.io/github/stars/CMLF-git-dev/MRLF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/CMLF-git-dev/MRLF?color=critical&style=social) | WWW 2022
| Multivariable
Classification
Forecasting | MuJoCo
Google Stock | EXIT | [EXIT: Extrapolation and Interpolation-based Neural Controlled Differential Equations for Time-series Classification and Forecasting](https://doi.org/10.1145/3485447.3512030) | [Pytorch](https://github.com/sheoyon-jhin/EXIT)
![Stars](https://img.shields.io/github/stars/sheoyon-jhin/EXIT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/sheoyon-jhin/EXIT?color=critical&style=social) | WWW 2022
| Traffic Flow | PEMS03
PEMS04
PEMS07
PEMS08 | ST-WA | [Towards Spatio- Temporal Aware Traffic Time Series Forecasting](https://ieeexplore.ieee.org/document/9835586) | [Pytorch](https://github.com/razvanc92/ST-WA)
![Stars](https://img.shields.io/github/stars/razvanc92/ST-WA?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/razvanc92/ST-WA?color=critical&style=social) | ICDE 2022
| Mobility
Prediction | NYC
Dallas
Miami | SHIFT | [Translating Human Mobility Forecasting through Natural Language Generation](https://doi.org/10.1145/3488560.3498387) | [Hao Xue](https://github.com/xuehaouwa) | WSDM 2022
| Traffic Flow | TaxiBJ
BikeNYC | ST-GSP | [ST-GSP: Spatial-Temporal Global Semantic Representation Learning for Urban Flow Prediction](https://dl.acm.org/doi/abs/10.1145/3488560.3498444) | [Pytorch](https://github.com/k51/STGSP)
![Stars](https://img.shields.io/github/stars/k51/STGSP?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/k51/STGSP?color=critical&style=social) | WSDM 2022
| Multivariable | Traffic
Temperature | ReTime | [Retrieval Based Time Series Forecasting](https://arxiv.org/abs/2209.13525#) | None| CIKM 2022
| Multivariable | Rainfall
Traffic
ETT
Stock
Climate | DXtreMM | [Deep Extreme Mixture Model for Time Series Forecasting](https://doi.org/10.1145/3511808.3557282) | [Pytorch](https://github.com/DXtreMM/DXtreMM_TSF)
![Stars](https://img.shields.io/github/stars/DXtreMM/DXtreMM_TSF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/DXtreMM/DXtreMM_TSF?color=critical&style=social) | CIKM 2022
| MTS Analysis
MTS Forecasting
Anormaly Detection | ETT
Electricity
SMD
SMAP
MSL
SWaT | MARINA | [MARINA: An MLP-Attention Model for Multivariate Time-Series](https://doi.org/10.1145/3511808.3557386) | None| CIKM 2022
| Traffic Speed | METR-LA
PEMS-BAY | ResCAL | [Residual Correction in Real-Time Traffic Forecasting](https://doi.org/10.1145/3511808.3557432) | None | CIKM 2022
| Model Selection | | AutoForecast | [AutoForecast: Automatic Time-Series Forecasting Model Selection](https://doi.org/10.1145/3511808.3557241) | None | CIKM 2022
| Traffic Flow | PEMS04
PEMS07
PEMS08 | DastNet | [Domain Adversarial Spatial-Temporal Network: A Transferable Framework for Short-term Traffic Forecasting across Cities](https://doi.org/10.1145/3511808.3557294) | [Pytorch](https://github.com/YihongT/DASTNet)
![Stars](https://img.shields.io/github/stars/YihongT/DASTNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/YihongT/DASTNet?color=critical&style=social) | CIKM 2022
| Traffic Flow & Speed | METR-LA
PEMS-BAY
PEMS03
PEMS04
PEMS07
PEMS08 | AutoSTS | [Automated Spatio-Temporal Synchronous Modeling with Multiple Graphs for Traffic Prediction](https://doi.org/10.1145/3511808.3557243) | YongLi THU | CIKM 2022
| Traffic Condition | TRCV-BJ
TRCV-SH
TRCV-ZZ | DuTraffic | [DuTraffic: Live Traffic Condition Prediction with Trajectory Data and Street Views at Baidu Maps](https://doi.org/10.1145/3511808.3557151) | None | CIKM 2022
| Multivariable | ETT
Electricity
WTH
Weather
ILI
Exchange | Linear | [Do Simpler Statistical Methods Perform Better in Multivariate Long Sequence Time-Series Forecasting?](https://doi.org/10.1145/3511808.3557585) | None | CIKM 2022
| Multivariable | Solar
Traffic
Electricity
Exchange | MAGL | [Memory Augmented Graph Learning Networks for Multivariate Time Series Forecasting](https://doi.org/10.1145/3511808.3557638) | None | CIKM 2022
| Multivariable | PEMS04
PEMS07
PEMS08
PEMS-BAY
Electricity | STID | [Spatial-Temporal Identity: A Simple yet Effective Baseline for Multivariate Time Series Forecasting](https://doi.org/10.1145/3511808.3557702) | [Pytorch](https://github.com/zezhishao/STID)
![Stars](https://img.shields.io/github/stars/zezhishao/STID?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zezhishao/STID?color=critical&style=social) | CIKM 2022
| Multivariable | METR-LA
PEMS-BAY
PEMS04
PEMS07 | ASTTN | [Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting](https://dl.acm.org/doi/abs/10.1145/3511808.3557540) | None | CIKM 2022
| Multivariable | Seoul | CGAN | [Context-aware Traffic Flow Forecasting in New Roads](https://doi.org/10.1145/3511808.3557566) | None | CIKM 2022
| Traffic Flow & Speed | METR-LA
PEMS-BAY
PEMS-M
PEMS04
PEMS08 | ST-GAT | [ST-GAT: A Spatio-Temporal Graph Attention Network for Accurate Traffic Speed Prediction](https://doi.org/10.1145/3511808.3557705) | [Author](https://github.com/Hanyang-HCC-Lab) | CIKM 2022
| Traffic Speed | METR-LA
PEMS-BAY | HOMGNNs | [Higher-Order Masked Graph Neural Networks for Traffic Flow Prediction](https://ieeexplore.ieee.org/document/10027720) | [Pytorch](https://github.com/maisuiqianxun/HOMGNN)
![Stars](https://img.shields.io/github/stars/maisuiqianxun/HOMGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/maisuiqianxun/HOMGNN?color=critical&style=social) | ICDM 2022
| Multivariable | M4
Electricity
car-parts | TopAttn | [Topological Attention for Time Series Forecasting](https://NeurIPS.cc/Conferences/2021/ScheduleMultitrack?event=26763) | [Pytorch](https://github.com/plus-rkwitt/TAN)

![Stars](https://img.shields.io/github/stars/plus-rkwitt/TAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/plus-rkwitt/TAN?color=critical&style=social) Future | NeurIPS 2021
| Multivariable | Rossmann
M5
Wiki | MisSeq | [MixSeq: Connecting Macroscopic Time Series Forecasting with Microscopic Time Series Data](https://proceedings.neurips.cc/paper/2021/hash/6b5754d737784b51ec5075c0dc437bf0-Abstract.html) | None | NeurIPS 2021
| Multivariable | ETT
Electricity
Exchange
Traffic
Weather
ILI | Autoformer | [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://openreview.net/forum?id=J4gRj6d5Qm) | [Pytorch](https://github.com/thuml/Autoformer)
![Stars](https://img.shields.io/github/stars/thuml/Autoformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuml/Autoformer?color=critical&style=social) | NeurIPS 2021
| Multivariable | PEMS04
PEMS08
Traffic
ADI
M4 ,etc | Error | [Adjusting for Autocorrelated Errors in Neural Networks for Time Series](https://openreview.net/forum?id=tJ_CO8orSI) | [Pytorch](https://github.com/Daikon-Sun/AdjustAutocorrelation)
![Stars](https://img.shields.io/github/stars/Daikon-Sun/AdjustAutocorrelation?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Daikon-Sun/AdjustAutocorrelation?color=critical&style=social) | NeurIPS 2021
| Multivariable | Bytom
Decentraland
PEMS04
PEMS08| Z-GCNETs | [Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting](http://proceedings.mlr.press/v139/chen21o.html) | [Pytorch](https://github.com/Z-GCNETs/Z-GCNETs)
![Stars](https://img.shields.io/github/stars/Z-GCNETs/Z-GCNETs?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Z-GCNETs/Z-GCNETs?color=critical&style=social) | ICML 2021
| Multivariable | PEMS07(M)
METR-LA
PEMS-BAY | Cov | [Conditional Temporal Neural Processes with Covariance Loss](http://proceedings.mlr.press/v139/yoo21b.html) | None | ICML 2021
| Multivariable | METR-LA
PEMS-BAY
PMU | GTS | [Discrete Graph Structure Learning for Forecasting Multiple Time Series](https://openreview.net/forum?id=WEHSlH5mOk) | [Pytorch](https://github.com/chaoshangcs/GTS)
![Stars](https://img.shields.io/github/stars/chaoshangcs/GTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/chaoshangcs/GTS?color=critical&style=social) | ICLR 2021
| Multivariable | Benz
Air Quality
FuelMoisture | framework | [A Transformer-based Framework for Multivariate Time Series Representation Learning](https://doi.org/10.1145/3447548.3467401) | [Pytorch](https://github.com/gzerveas/mvts_transformer)
![Stars](https://img.shields.io/github/stars/gzerveas/mvts_transformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/gzerveas/mvts_transformer?color=critical&style=social) | KDD 2021
| Federated Multivariable | PEMS-BAY
METR-LA | CNFGNN | [Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling](https://doi.org/10.1145/3447548.3467371) | [Pytorch](https://github.com/mengcz13/KDD2021_CNFGNN)
![Stars](https://img.shields.io/github/stars/mengcz13/KDD2021_CNFGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/mengcz13/KDD2021_CNFGNN?color=critical&style=social) | KDD 2021
| Traffic Speed | PEMS04
PEMS08
England | DMSTGCN | [Dynamic and Multi-faceted Spatio-temporal Deep Learning for Traffic Speed Forecasting](https://doi.org/10.1145/3447548.3467275) | [Pytorch](https://github.com/liangzhehan/DMSTGCN)
![Stars](https://img.shields.io/github/stars/liangzhehan/DMSTGCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/liangzhehan/DMSTGCN?color=critical&style=social) | KDD 2021
| Traffic Flow | PEMS07(M)
PEMS07(L)
PEMS03
PEMS04
PEMS07
PEMS08 | STGODE | [Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting](https://doi.org/10.1145/3447548.3467430) | [Pytorch](https://github.com/square-coder/STGODE)
![Stars](https://img.shields.io/github/stars/square-coder/STGODE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/square-coder/STGODE?color=critical&style=social) | KDD 2021
| Multivariable | BikeNYC
PEMS07(M)
Electricity | ST-Norm | [ST-Norm: Spatial and Temporal Normalization for Multi-variate Time Series Forecasting](https://doi.org/10.1145/3447548.3467330) | [Pytorch](https://github.com/JLDeng/ST-Norm)
![Stars](https://img.shields.io/github/stars/JLDeng/ST-Norm?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/JLDeng/ST-Norm?color=critical&style=social) | KDD 2021
| Multivariable | DiDiXM
DiDiCD | TrajNet | [TrajNet: A Trajectory-Based Deep Learning Model for Traffic Prediction](https://doi.org/10.1145/3447548.3467236) | None | KDD 2021
| Robust Forecasting | MIMIC-III
USHCN
KDD-CUP | DGM | [Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series](https://ojs.aaai.org/index.php/AAAI/article/view/16145) | [Pytorch](https://github.com/thuwuyinjun/DGM2)
![Stars](https://img.shields.io/github/stars/thuwuyinjun/DGM2?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuwuyinjun/DGM2?color=critical&style=social) | AAAI 2021
| Multivariable | Guangzhou
Seattle
HZMetro , etc. | DSARF | [Deep Switching Auto-Regressive Factorization: Application to Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/16907) | [Pytorch](https://github.com/ostadabbas/DSARF)
![Stars](https://img.shields.io/github/stars/ostadabbas/DSARF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ostadabbas/DSARF?color=critical&style=social) | AAAI 2021
|Traffic Speed | METR-LA
PEMS-BAY | FC-GAGA | [FC-GAGA: Fully Connected Gated Graph Architecture for Spatio-Temporal Traffic Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/17114) | [TF](https://github.com/boreshkinai/fc-gaga)
![Stars](https://img.shields.io/github/stars/boreshkinai/fc-gaga?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/boreshkinai/fc-gaga?color=critical&style=social) | AAAI 2021
|Traffic Speed | DiDiJiNan
DiDiXiAn | HGCN | [Hierarchical Graph Convolution Network for Traffic Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/16088) | [Pytorch](https://github.com/guokan987/HGCN)
![Stars](https://img.shields.io/github/stars/guokan987/HGCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/guokan987/HGCN?color=critical&style=social) | AAAI 2021
| Multivariable | ETT
Weather
Electricity | Informer | [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/17325) | [Pytorch](https://github.com/zhouhaoyi/Informer2020)
![Stars](https://img.shields.io/github/stars/zhouhaoyi/Informer2020?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhouhaoyi/Informer2020?color=critical&style=social) | AAAI 2021
| Traffic Flow | NYCMetro
NYC Bike
NYC Taxi | MOTHER | [Modeling Heterogeneous Relations across Multiple Modes for Potential Crowd Flow Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/16603) | None | AAAI 2021
| Multivariable | METR-LA
PEMS-BAY
PEMS07(M)
PEMS07(L)
PEMS03
PEMS04
PEMS07
PEMS08 | STFGNN | [Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/16542) | [Mxnet](https://github.com/MengzhangLI/STFGNN)
![Stars](https://img.shields.io/github/stars/MengzhangLI/STFGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/MengzhangLI/STFGNN?color=critical&style=social) | AAAI 2021
| Multivariable | BJ Taxi
NYC Taxi
NYC Bike1
NYC Bike2 | STGDN | [Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network](https://ojs.aaai.org/index.php/AAAI/article/view/17761) | [Mxnet](https://github.com/nimingniming/gdn)
![Stars](https://img.shields.io/github/stars/nimingniming/gdn?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/nimingniming/gdn?color=critical&style=social) | AAAI 2021
| Traffic Flow | SG-TAXI | TrGNN | [Traffic Flow Prediction with Vehicle Trajectories](https://ojs.aaai.org/index.php/AAAI/article/view/16104) | [Pytorch](https://github.com/mingqian000/TrGNN)
![Stars](https://img.shields.io/github/stars/mingqian000/TrGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/mingqian000/TrGNN?color=critical&style=social) | AAAI 2021
| Multivariable | Road
POIs
SIGtraf | DMLM | [Predicting Traffic Congestion Evolution: A Deep Meta Learning Approach](https://www.ijcai.org/proceedings/2021/0417.pdf) | [Future](https://github.com/HelenaYD/DMLM) | IJCAI 2021
| Multivariable | East Bay
METR-LA
US | D-DA-GRNN | [EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time Series Forecasting](https://ieeexplore.ieee.org/abstract/document/9458855) | [Pytorch](https://github.com/razvanc92/EnhanceNet)
![Stars](https://img.shields.io/github/stars/razvanc92/EnhanceNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/razvanc92/EnhanceNet?color=critical&style=social) | ICDE 2021
| Multivariable | Water
Humidity
Wind, etc | EA-DRL | [An Actor-Critic Ensemble Aggregation Model for Time-Series Forecasting](https://ieeexplore.ieee.org/abstract/document/9458798) | None | ICDE 2021
| Traffic Flow | TaxiBJ
DiDiCD
TaxiRome | AttConvLSTM | [Modeling Citywide Crowd Flows using Attentive Convolutional LSTM](https://ieeexplore.ieee.org/document/9458664) | None | ICDE 2021
| Traffic Speed
Traffic Flow | METR-LA
PEMS-BAY
eMS03
PEMS04
PEMS07
PEMS08...| Benchmark | [An Empirical Experiment on Deep Learning Models for Predicting Traffic Data](https://ieeexplore.ieee.org/document/9458663) | [Future](https://github.com/HyunWookL/An-Empirical-Experiment-on-Deep-Learning-Models-for-Predicting-Traffic-Data) | ICDE 2021
| Multivariable | Motes
Soil
Revenue
Traffic
20CR | NET | [Network of Tensor Time Series](https://doi.org/10.1145/3442381.3449969) | [Pytorch](https://github.com/baoyujing/NET3)
![Stars](https://img.shields.io/github/stars/baoyujing/NET3?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/baoyujing/NET3?color=critical&style=social) | WWW 2021
| Multivariable | VevoMusic
WikiTraffic
LOS-LOOP
SZ-taxi | Radflow | [Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of Time Series](https://doi.org/10.1145/3442381.3449945) | [Pytorch](https://github.com/alasdairtran/radflow)
![Stars](https://img.shields.io/github/stars/alasdairtran/radflow?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/alasdairtran/radflow?color=critical&style=social) | WWW 2021
| Multivariable | METR-LA
Wiki-EN | REST | [REST: Reciprocal Framework for Spatiotemporal-coupled Predictions](https://doi.org/10.1145/3442381.3449928) | None | WWW 2021
| Multivariable | PEMS03
PEMS04
PEMS07
PEMS08
HZMetro | ASTGNN | [Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting](https://ieeexplore.ieee.org/document/9346058) | [Pytorch](https://github.com/guoshnBJTU/ASTGNN)
![Stars](https://img.shields.io/github/stars/guoshnBJTU/ASTGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/guoshnBJTU/ASTGNN?color=critical&style=social) | TKDE 2021
| Multivariable | TaxiBJ
BikeNYC-I
BikeNYC-II
TaxiNYC
METR-LA
PEMS-BAY
PEMS07(M) | DL-Traff | [DL-Traff: Survey and Benchmark of Deep Learning Models for Urban Traffic Prediction](https://doi.org/10.1145/3459637.3482000) | Graph:[PyTorch](https://github.com/deepkashiwa20/DL-Traff-Graph)
Grid:[TF](https://github.com/deepkashiwa20/DL-Traff-Grid)
![Stars](https://img.shields.io/github/stars/deepkashiwa20/DL-Traff-Graph?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/deepkashiwa20/DL-Traff-Graph?color=critical&style=social) | CIKM 2021
| Multivariable | METR-LA
PEMS-BAY
PEMS07(M) | TorchGeoTem | [PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models](https://doi.org/10.1145/3459637.3482000) | [PyTorch](https://github.com/benedekrozemberczki/pytorch_geometric_temporal) | CIKM 2021
| Traffic Flow | TaxiBJ
BikeNYC | LLF | [Learning to Learn the Future: Modeling Concept Drifts in Time Series Prediction](https://doi.org/10.1145/3459637.3482271) | None | CIKM 2021
| Multivariable | ETT
Electricity | HI | [Historical Inertia: A Neglected but Powerful Baseline for Long Sequence Time-series Forecasting](https://doi.org/10.1145/3459637.3482120) | None | CIKM 2021
| Multivariable | ETT
ELE | AGCNT | [AGCNT: Adaptive Graph Convolutional Network for Transformer-based Long Sequence Time-Series Forecasting](https://doi.org/10.1145/3459637.3482054) | None | CIKM 2021
| Cellular Traffic | cellular | MPGAT | [Multivariate and Propagation Graph Attention Network for Spatial-Temporal Prediction with Outdoor Cellular Traffic](https://doi.org/10.1145/3459637.3482152) | [Pytorch](https://github.com/cylin-cmlab/MPNet)
![Stars](https://img.shields.io/github/stars/cylin-cmlab/MPNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/cylin-cmlab/MPNet?color=critical&style=social)
Future | CIKM 2021
| Traffic Speed | METR-LA
PEMS-BAY
Simulated | STNN | [Space Meets Time: Local Spacetime Neural Network For Traffic Flow Forecasting](https://ieeexplore.ieee.org/abstract/document/9679008/) | [Pytorch](https://github.com/songyangco/STNN)
![Stars](https://img.shields.io/github/stars/songyangco/STNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/songyangco/STNN?color=critical&style=social) | ICDM 2021
| Traffic Speed | DiDiCD
DiDiXiAn | T-wave | [Trajectory WaveNet: A Trajectory-Based Model for Traffic Forecasting](https://ieeexplore.ieee.org/abstract/document/9679147) | [Pytorch](https://github.com/songyangco/STNN)
![Stars](https://img.shields.io/github/stars/songyangco/STNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/songyangco/STNN?color=critical&style=social) | ICDM 2021
| Multivariable | Sanyo
Hanergy
Solar
Electricity
Exchange | SSDNet | [SSDNet: State Space Decomposition Neural Network for Time Series Forecasting](https://ieeexplore.ieee.org/abstract/document/9679135/) | [Pytorch](https://github.com/YangLIN1997/SSDNet-ICDM2021)
![Stars](https://img.shields.io/github/stars/YangLIN1997/SSDNet-ICDM2021?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/YangLIN1997/SSDNet-ICDM2021?color=critical&style=social) | ICDM 2021
| Traffic Volumn | HangZhou City
JiNan City | CTVI | [Temporal Multi-view Graph Convolutional Networks for Citywide Traffic Volume Inference](https://ieeexplore.ieee.org/abstract/document/9679045/) | [Pytorch](https://github.com/dsj96/CTVI-master)
![Stars](https://img.shields.io/github/stars/dsj96/CTVI-master?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/dsj96/CTVI-master?color=critical&style=social) | ICDM 2021
| Traffic Volumn | Uber Movements
Grab-Posisi | TEST-GCN | [TEST-GCN: Topologically Enhanced Spatial-Temporal Graph Convolutional Networks for Traffic Forecasting](https://ieeexplore.ieee.org/abstract/document/9679077) | None | ICDM 2021
| Multivariable | Air Quality City
Meterology | ATGCN | [Modeling Inter-station Relationships with Attentive Temporal Graph Convolutional Network for Air Quality Prediction](https://doi.org/10.1145/3437963.3441731) | None | WSDM 2021
| Traffic Flow | WalkWLA
BikeNYC
TaxiNYC | PDSTN | [Predicting Crowd Flows via Pyramid Dilated Deeper Spatial-temporal Network](https://doi.org/10.1145/3437963.3441785) | None | WSDM 2021
| Traffic Flow | PEMS04
PEMS08 | AGCRN | [Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting](https://proceedings.neurips.cc/paper/2020/hash/ce1aad92b939420fc17005e5461e6f48-Abstract.html) | [Pytorch](https://github.com/LeiBAI/AGCRN)
![Stars](https://img.shields.io/github/stars/LeiBAI/AGCRN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LeiBAI/AGCRN?color=critical&style=social) | NeurIPS 2020
| Multivariable | Electricity
Traffic
Wind
Solar
M4-Hourly | AST | [Adversarial Sparse Transformer for Time Series Forecasting](https://proceedings.neurips.cc/paper/2020/hash/c6b8c8d762da15fa8dbbdfb6baf9e260-Abstract.html) | [Pytorch](https://github.com/hihihihiwsf/AST)
![Stars](https://img.shields.io/github/stars/hihihihiwsf/AST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hihihihiwsf/AST?color=critical&style=social) | NeurIPS 2020
| Multivariable | METR-LA
PEMS-BAY
PEMS07
PEMS03
PEMS04 ,etc | StemGNN | [Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting](https://proceedings.neurips.cc/paper/2020/hash/cdf6581cb7aca4b7e19ef136c6e601a5-Abstract.html) | [Pytorch](https://github.com/microsoft/StemGNN)
![Stars](https://img.shields.io/github/stars/microsoft/StemGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/microsoft/StemGNN?color=critical&style=social) | NeurIPS 2020
| Multivariable | M4
M3
Tourism | N-BEATS | [N-BEATS: Neural basis expansion analysis for interpretable time series forecasting](https://openreview.net/forum?id=r1ecqn4YwB) | [Pytorch+Keras](https://github.com/philipperemy/n-beats)
![Stars](https://img.shields.io/github/stars/philipperemy/n-beats?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/philipperemy/n-beats?color=critical&style=social) | ICLR 2020
| Traffic Flow | Traffic
Energy
Electricity
Exchange
METR-LA
PEMS-BAY | MTGNN | [Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks](https://dl.acm.org/doi/10.1145/3394486.3403118) | [Pytorch](https://github.com/nnzhan/MTGNN)
![Stars](https://img.shields.io/github/stars/nnzhan/MTGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/nnzhan/MTGNN?color=critical&style=social) | KDD 2020
| Traffic Flow | Taxi-NYC
Bike-NYC
CTM | DSAN | [Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction](https://doi.org/10.1145/3394486.3403118) | [TF](https://github.com/haoxingl/DSAN)
![Stars](https://img.shields.io/github/stars/haoxingl/DSAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/haoxingl/DSAN?color=critical&style=social) | KDD 2020
| Traffic Speed
Traffic Flow | Shenzhen | Curb-GAN | [Curb-GAN: Conditional Urban Traffic Estimation through Spatio-Temporal Generative Adversarial Networks](https://doi.org/10.1145/3394486.3403127) | [Pytorch](https://github.com/Curb-GAN/Curb-GAN)
![Stars](https://img.shields.io/github/stars/Curb-GAN/Curb-GAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Curb-GAN/Curb-GAN?color=critical&style=social) | KDD 2020
| Traffic Flow | TaxiBJ
CrowdBJ
TaxiJN
TaxiGY | AutoST | [AutoST: Efficient Neural Architecture Search for Spatio-Temporal Prediction](https://doi.org/10.1145/3394486.3403122) | None | KDD 2020
| Traffic Volumn | W3-715
E5-2907 | HSTGCN | [Hybrid Spatio-Temporal Graph Convolutional Network: Improving Traffic Prediction with Navigation Data](https://doi.org/10.1145/3394486.3403358) | None | KDD 2020
| Multivariable| Xiamen
PEMS-BAY | GMAN | [GMAN: A Graph Multi-Attention Network for Traffic Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/5477) | [TF](https://github.com/zhengchuanpan/GMAN)

![Stars](https://img.shields.io/github/stars/zhengchuanpan/GMAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhengchuanpan/GMAN?color=critical&style=social) [Pytorch](https://github.com/VincLee8188/GMAN-PyTorch) | AAAI 2020
| Multivariable | PEMS03
PEMS04
PEMS07
PEMS08 | STSGCN | [Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/5438) | [Mxnet](https://github.com/Davidham3/STSGCN)
![Stars](https://img.shields.io/github/stars/Davidham3/STSGCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Davidham3/STSGCN?color=critical&style=social)
[Pytorch](https://github.com/SmallNana/STSGCN_Pytorch)
![Stars](https://img.shields.io/github/stars/SmallNana/STSGCN_Pytorch?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SmallNana/STSGCN_Pytorch?color=critical&style=social) | AAAI 2020
| Multivariable | Traffic
Energy
NASDAQ | MLCNN | [Towards Better Forecasting by Fusing Near and Distant Future Visions](https://ojs.aaai.org/index.php/AAAI/article/view/5466) | [Pytorch](https://github.com/smallGum/MLCNN-Multivariate-Time-Series)
![Stars](https://img.shields.io/github/stars/smallGum/MLCNN-Multivariate-Time-Series?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/smallGum/MLCNN-Multivariate-Time-Series?color=critical&style=social) | AAAI 2020
| Multivariable | PEMS-S
PEMS-BAY
METR-LA
BJF
BRF
BRF-L | SLCNN | [Spatio-temporal graph structure learning for traffic forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/5770) | None | AAAI 2020
| Traffic Speed | METR-LA
PEMS-BAY | MRA-BGCN | [Multi-Range Attentive Bicomponent Graph Convolutional Network for Traffic Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/5758) | None | AAAI 2020
| Metro Flow | HKMetro | WDGTC | [Tensor Completion for Weakly-Dependent Data on Graph for Metro Passenger Flow Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/5915) | [TF](https://github.com/bonaldli/WDG_TC)
![Stars](https://img.shields.io/github/stars/bonaldli/WDG_TC?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/bonaldli/WDG_TC?color=critical&style=social) | AAAI 2020
| Multivariable | MovingMNIST
TaxiBJ
KTH | SA-ConvLSTM | [Self-Attention ConvLSTM for Spatiotemporal Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/6819) | [TF](https://github.com/MahatmaSun1/SaConvSLTM)
![Stars](https://img.shields.io/github/stars/MahatmaSun1/SaConvSLTM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/MahatmaSun1/SaConvSLTM?color=critical&style=social)
[PyTorch](https://github.com/jerrywn121/TianChi_AIEarth) | AAAI 2020
| Metro Flow | SydneyMetro | MLC-PPF | [Potential Passenger Flow Prediction-A Novel Study for Urban Transportation Development](https://ojs.aaai.org/index.php/AAAI/article/view/5819) | None | AAAI 2020
| Commuting Flow | Lodes
Pluto
OSRM | GMEL | [Learning Geo-Contextual Embeddings for Commuting Flow Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/5425) | [Pytorch](https://github.com/jackmiemie/GMEL)
![Stars](https://img.shields.io/github/stars/jackmiemie/GMEL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/jackmiemie/GMEL?color=critical&style=social) | AAAI 2020
| Multivariable | Traffic
Exchange
Solar | DeepTrends | [Tensorized LSTM with Adaptive Shared Memory for Learning Trends in Multivariate Time Series](https://ojs.aaai.org/index.php/AAAI/article/view/5496) | [TF](https://github.com/DerronXu/DeepTrends)
![Stars](https://img.shields.io/github/stars/DerronXu/DeepTrends?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/DerronXu/DeepTrends?color=critical&style=social) | AAAI 2020
| Multivariable | Traffic
Electricity
SmokeVideo
PCSales
RawMaterials | BHT | [Block Hankel Tensor ARIMA for Multiple Short Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/6032) | [Python](https://github.com/huawei-noah/BHT-ARIMA)
![Stars](https://img.shields.io/github/stars/huawei-noah/BHT-ARIMA?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/huawei-noah/BHT-ARIMA?color=critical&style=social) | AAAI 2020
| Traffic Speed | PEMS04
PEMS07
PEMS08 | LSGCN | [LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks](https://dl.acm.org/doi/abs/10.5555/3491440.3491766) | [TF](https://github.com/helanzhu/LSGCN)
![Stars](https://img.shields.io/github/stars/helanzhu/LSGCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/helanzhu/LSGCN?color=critical&style=social) | IJCAI 2020
| Traffic Flow | BikeNYC
MobileBJ | CSCNet | [A Sequential Convolution Network for Population Flow Prediction with Explicitly Correlation Modelling](https://dl.acm.org/doi/abs/10.5555/3491440.3491625) | None | IJCAI 2020
| Multivariable | USDCNY
USDKRW
USDIDR | WATTNet | [WATTNet: learning to trade FX via hierarchical spatio-temporal representation of highly multivariate time series](https://www.ijcai.org/proceedings/2020/0630.pdf) | [TF](https://github.com/pablovicente/keras-wattnet)
![Stars](https://img.shields.io/github/stars/pablovicente/keras-wattnet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/pablovicente/keras-wattnet?color=critical&style=social) | IJCAI 2020
| Fine-grained | CitiBikeNYC
Div
Metro | GACNN | [Towards Fine-grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems](https://doi.org/10.1145/3366423.3380097) | None | WWW 2020
| Flow
Distribution | Austin
Louisville
Minneapolis | GCScoot | [Dynamic Flow Distribution Prediction for Urban Dockless E-Scooter Sharing Reconfiguration](https://doi.org/10.1145/3366423.3380101) | None | WWW 2020
| Traffic Speed | METR-LA
PEMS-BAY | STGNN | [Traffic Flow Prediction via Spatial Temporal Graph Neural Network](https://doi.org/10.1145/3366423.3380186) | [Pytorch](https://github.com/LMissher/STGNN)
![Stars](https://img.shields.io/github/stars/LMissher/STGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LMissher/STGNN?color=critical&style=social) | WWW 2020
| Traffic Speed | DiDiCD | STAG-GCN | [Spatiotemporal Adaptive Gated Graph Convolution Network for Urban Traffic Flow Forecasting](https://doi.org/10.1145/3340531.3411894) | [Pytorch](https://github.com/RobinLu1209/STAG-GCN)
![Stars](https://img.shields.io/github/stars/RobinLu1209/STAG-GCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/RobinLu1209/STAG-GCN?color=critical&style=social) | CIKM 2020
| Traffic Speed | METR-LA
PEMS-BAY | ST-GRAT | [ST-GRAT: A Novel Spatio-temporal Graph Attention Networks for Accurately Forecasting Dynamically Changing Road Speed](https://doi.org/10.1145/3340531.3411940) | [Pytorch](https://github.com/LMissher/ST-GRAT)
![Stars](https://img.shields.io/github/stars/LMissher/ST-GRAT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LMissher/ST-GRAT?color=critical&style=social) | CIKM 2020
| Traffic Flow | BJ-Taxi
NYC-Taxi
NYC-Bike-1
NYC-Bike-2 | ST-CGA | [Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting](https://doi.org/10.1145/3340531.3411941) | [Keras](https://github.com/jbdj-star/cga)
![Stars](https://img.shields.io/github/stars/jbdj-star/cga?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/jbdj-star/cga?color=critical&style=social) | CIKM 2020
| Traffic Flow | NYCBike
NYCTaxi | MT-ASTN | [Multi-task Adversarial Spatial-Temporal Networks for Crowd Flow Prediction](https://doi.org/10.1145/3340531.3412054) | [Pytorch](https://github.com/MiaoHaoSunny/MT-ASTN)
![Stars](https://img.shields.io/github/stars/MiaoHaoSunny/MT-ASTN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/MiaoHaoSunny/MT-ASTN?color=critical&style=social) | CIKM 2020
| Traffic Speed | SFO
NYC | DIGC | [Deep Graph Convolutional Networks for Incident-Driven Traffic Speed Prediction](https://doi.org/10.1145/3340531.3411873) | None | CIKM 2020
| Metro Flow | SZMetro
HZMetro | STP-TrellisNets | [STP-TrellisNets: Spatial-Temporal Parallel TrellisNets for Metro Station Passenger Flow Prediction](https://doi.org/10.1145/3340531.3411874) | None | CIKM 2020
| Multivariable | Air Quality
BikeNYC
METR-LA | AGSTN | [AGSTN: Learning Attention-adjusted Graph Spatio-Temporal Networks for Short-term Urban Sensor Value Forecasting](https://ieeexplore.ieee.org/abstract/document/9338255) | [Keras](https://github.com/l852888/AGSTN)
![Stars](https://img.shields.io/github/stars/l852888/AGSTN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/l852888/AGSTN?color=critical&style=social) | ICDM 2020
| Traffic Speed | METR-LA
PEMS-BAY | FreqST | [FreqST: Exploiting Frequency Information in Spatiotemporal Modeling for Traffic Prediction](https://ieeexplore.ieee.org/abstract/document/9338305) | None | ICDM 2020
| Traffic Flow | PEMS03
PEMS07 | TSSRGCN | [Tssrgcn: Temporal spectral spatial retrieval graph convolutional network for traffic flow forecasting](https://ieeexplore.ieee.org/abstract/document/9338393) | None | ICDM 2020
| Multivariable | Air Quality
DarkSky
Geographic | DeepLATTE | [Building Autocorrelation-Aware Representations for Fine-Scale Spatiotemporal Prediction](https://ieeexplore.ieee.org/abstract/document/9338402) | [Pytorch](https://github.com/spatial-computing/deeplatte-fine-scale-prediction)
![Stars](https://img.shields.io/github/stars/spatial-computing/deeplatte-fine-scale-prediction?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/spatial-computing/deeplatte-fine-scale-prediction?color=critical&style=social) | ICDM 2020
| Traffic Flow | XATaxi
BJTaxi
PortoTaxi | ST-PEFs | [Interpretable Spatiotemporal Deep Learning Model for Traffic Flow Prediction Based on Potential Energy Fields](https://ieeexplore.ieee.org/abstract/document/9338315) | None | ICDM 2020
| Traffic Speed
Flow | SZSpeed
SZTaxi | cST-ML | [cST-ML: Continuous Spatial-Temporal Meta-Learning for Traffic Dynamics Prediction](https://ieeexplore.ieee.org/abstract/document/9338315) | [Pytorch](https://github.com/yingxue-zhang/cST-ML)
![Stars](https://img.shields.io/github/stars/yingxue-zhang/cST-ML?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yingxue-zhang/cST-ML?color=critical&style=social) | ICDM 2020
| Multivariable | Electricity
Traffic
Wiki
PEMS07(M) | DeepGLO | [Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting](https://proceedings.neurips.cc/paper/2019/hash/3a0844cee4fcf57de0c71e9ad3035478-Abstract.html) | [Pytorch](https://github.com/rajatsen91/deepglo)
![Stars](https://img.shields.io/github/stars/rajatsen91/deepglo?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/rajatsen91/deepglo?color=critical&style=social) | NeurIPS 2019
| Multivariable | Electricity
Traffic
Solar
M4
Wind | LogSparse | [Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting](https://proceedings.neurips.cc/paper/2019/hash/6775a0635c302542da2c32aa19d86be0-Abstract.html) | [Pytorch](https://github.com/mlpotter/Transformer_Time_Series)
![Stars](https://img.shields.io/github/stars/mlpotter/Transformer_Time_Series?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/mlpotter/Transformer_Time_Series?color=critical&style=social) | NeurIPS 2019
| Multivariable | Synthetic
ECG5000
Traffic | DILATE | [Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models](https://proceedings.neurips.cc/paper/2019/hash/466accbac9a66b805ba50e42ad715740-Abstract.html) | [Pytorch](https://github.com/vincent-leguen/DILATE)
![Stars](https://img.shields.io/github/stars/vincent-leguen/DILATE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/vincent-leguen/DILATE?color=critical&style=social) | NeurIPS 2019
| Traffic Flow | Earthquake | DeepUrbanEvent | [DeepUrbanEvent: A System for Predicting Citywide Crowd Dynamics at Big Events](https://doi.org/10.1145/3292500.3330996) | [Keras](https://github.com/deepkashiwa/DeepUrbanEvent)
![Stars](https://img.shields.io/github/stars/deepkashiwa/DeepUrbanEvent?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/deepkashiwa/DeepUrbanEvent?color=critical&style=social) | KDD 2019
| Traffic Flow
Speed | TDrive
METR-LA | ST-MetaNet | [Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning](https://doi.org/10.1145/3292500.3330884) | [Mxnet](https://github.com/panzheyi/ST-MetaNet)
![Stars](https://img.shields.io/github/stars/panzheyi/ST-MetaNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/panzheyi/ST-MetaNet?color=critical&style=social) | KDD 2019
| Multivariable | Rossman
Walmart
Electricity
Traffic
Parts | ARU | [Streaming Adaptation of Deep Forecasting Models using Adaptive Recurrent Units](https://doi.org/10.1145/3292500.3330996) | [TF](https://github.com/pratham16cse/ARU)
![Stars](https://img.shields.io/github/stars/pratham16cse/ARU?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/pratham16cse/ARU?color=critical&style=social) | KDD 2019
| Multivariable | Air Quality | AccuAir | [AccuAir: Winning Solution to Air Quality Prediction for KDD Cup 2018](https://doi.org/10.1145/3292500.3330787) | None | KDD 2019
| Traffic Flow | Simulated
RoadTraffic
Wikipedia | ERMreg | [Regularized Regression for Hierarchical Forecasting Without Unbiasedness Conditions](https://doi.org/10.1145/3292500.3330976) | None | KDD 2019
| Multivariable
under event | Climate
Stock
Pseudo | EVL | [Modeling Extreme Events in Time Series Prediction](https://doi.org/10.1145/3292500.3330896) |None | KDD 2019
| Traffic Flow | PEMS04
PEMS08
METR-LA | ASTGCN | [Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/3881) | [Mxnet](https://github.com/Davidham3/ASTGCN)
![Stars](https://img.shields.io/github/stars/Davidham3/ASTGCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Davidham3/ASTGCN?color=critical&style=social) | AAAI 2019
| Traffic Flow
Speed | NYC
PEMS0(M) | DGCNN | [Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/3877) | None | AAAI 2019
| Traffic FLow | NYC-Taxi
NYC-Bike | STDN | [Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/4511) | [Keras](https://github.com/tangxianfeng/STDN)
![Stars](https://img.shields.io/github/stars/tangxianfeng/STDN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tangxianfeng/STDN?color=critical&style=social) | AAAI 2019
| Traffic Flow | MobileBJ
BikeNYC | DeepSTN+ | [DeepSTN+: context-aware spatial-temporal neural network for crowd flow prediction in metropolis](https://doi.org/10.1609/aaai.v33i01.33011020) | [TF](https://github.com/tsinghua-fib-lab/DeepSTN)
![Stars](https://img.shields.io/github/stars/tsinghua-fib-lab/DeepSTN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tsinghua-fib-lab/DeepSTN?color=critical&style=social) | AAAI 2019
| Traffic Speed | METR-LA
PEMS-BAY | Res-RGNN | [Gated residual recurrent graph neural networks for traffic prediction](https://doi.org/10.1609/aaai.v33i01.3301485) | None | AAAI 2019
| Traffic FLow | MetroBJ
BusBJ
TaxiBJ | GSTNet | [GSTNet: Global Spatial-Temporal Network for Traffic Flow Prediction](https://www.ijcai.org/Proceedings/2019/0317.pdf) | [Pytorch](https://github.com/WoodSugar/GSTNet)
![Stars](https://img.shields.io/github/stars/WoodSugar/GSTNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/WoodSugar/GSTNet?color=critical&style=social) | IJCAI 2019
| Traffic Speed | METR-LA
PEMS-BAY | GWN | [Graph WaveNet for Deep Spatial-Temporal Graph Modeling](https://doi.org/10.24963/ijcai.2019/264) | [Pytorch](https://github.com/nnzhan/Graph-WaveNet)
![Stars](https://img.shields.io/github/stars/nnzhan/Graph-WaveNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/nnzhan/Graph-WaveNet?color=critical&style=social) | IJCAI 2019
| Traffic Flow | DidiSY
BikeNYC
TaxiBJ | STG2Seq | [STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting](https://openreview.net/forum?id=Ein6fZbizNZ) | [TF](https://github.com/LeiBAI/STG2Seq)
![Stars](https://img.shields.io/github/stars/LeiBAI/STG2Seq?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LeiBAI/STG2Seq?color=critical&style=social) | IJCAI 2019
| Multivariable | GHL
Electricity
TEP | DyAt | [DyAt Nets: Dynamic Attention Networks for State Forecasting in Cyber-Physical Systems](https://www.ijcai.org/Proceedings/2019/0441.pdf) | [Pytorch](https://github.com/nmuralid1/DynamicAttentionNetworks)
![Stars](https://img.shields.io/github/stars/nmuralid1/DynamicAttentionNetworks?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/nmuralid1/DynamicAttentionNetworks?color=critical&style=social) | IJCAI 2019
| Multivariable | Air Quality | MGED | [Multi-Group Encoder-Decoder Networks to Fuse Heterogeneous Data for Next-Day Air Quality Prediction](https://www.ijcai.org/proceedings/2019/0603.pdf) | None | IJCAI 2019
| Traffic Volumn | Chicago
Boston | MetaST | [Learning from Multiple Cities: A Meta-Learning Approach for Spatial-Temporal Prediction](https://doi.org/10.1145/3308558.3313577) | [TF](https://github.com/huaxiuyao/MetaST)
![Stars](https://img.shields.io/github/stars/huaxiuyao/MetaST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/huaxiuyao/MetaST?color=critical&style=social) | WWW 2019
| TrafficPred
imputation |GZSpeed
HZMetro
Seattle
London | BTF | [Bayesian Temporal Factorization for Multidimensional Time Series Prediction](https://ieeexplore.ieee.org/abstract/document/9380704) | [Python](https://github.com/nmuralid1/DynamicAttentionNetworks)
![Stars](https://img.shields.io/github/stars/nmuralid1/DynamicAttentionNetworks?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/nmuralid1/DynamicAttentionNetworks?color=critical&style=social) | TPAMI 2019
| Multivariable | Gas Station | DSANet | [DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting](https://doi.org/10.1145/3357384.3358132) | [Pytorch](https://github.com/bighuang624/DSANet)
![Stars](https://img.shields.io/github/stars/bighuang624/DSANet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/bighuang624/DSANet?color=critical&style=social) | CIKM 2019
| Multivariable | Solar
Traffic
Exchange
Electricity
PEMS ,etc | Study | [Experimental Study of Multivariate Time Series Forecasting Models](https://doi.org/10.1145/3357384.3357826) | None | CIKM 2019
| Traffic Speed | DiDiCD
DiDiXA | BTRAC | [Boosted Trajectory Calibration for Traffic State Estimation](https://ieeexplore.ieee.org/abstract/document/8970880) | None | ICDM 2019
| Multivariable | Photovoltaic | MTEX-CNN | [MTEX-CNN: Multivariate Time Series EXplanations for Predictions with Convolutional Neural Networks](https://ieeexplore.ieee.org/abstract/document/8970899) | [Pytorch](https://github.com/duyanhpham-brs/XAI-Multivariate-Time-Series)
![Stars](https://img.shields.io/github/stars/duyanhpham-brs/XAI-Multivariate-Time-Series?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/duyanhpham-brs/XAI-Multivariate-Time-Series?color=critical&style=social) | ICDM 2019
| Traffic Speed | BJER4
PEMS07(M)
PEMS07(L) | STGCN | [Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting](https://openreview.net/forum?id=SkNeyVzOWB) | [TF](https://github.com/VeritasYin/STGCN_IJCAI-18)
![Stars](https://img.shields.io/github/stars/VeritasYin/STGCN_IJCAI-18?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/VeritasYin/STGCN_IJCAI-18?color=critical&style=social) [Mxnet](https://github.com/Davidham3/STGCN) [Pytorch1](https://github.com/FelixOpolka/STGCN-PyTorch)
![Stars](https://img.shields.io/github/stars/FelixOpolka/STGCN-PyTorch?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/FelixOpolka/STGCN-PyTorch?color=critical&style=social) [Pytorch2](https://github.com/hazdzz/STGCN) [Pytorch3](https://github.com/Aguin/STGCN-PyTorch)
![Stars](https://img.shields.io/github/stars/Aguin/STGCN-PyTorch?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Aguin/STGCN-PyTorch?color=critical&style=social) | IJCAI 2018
| Traffic Speed | METR-LA
PEMS-BAY | DCRNN | [Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting](https://openreview.net/forum?id=SJiHXGWAZ) | [TF](https://github.com/liyaguang/DCRNN)
![Stars](https://img.shields.io/github/stars/liyaguang/DCRNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/liyaguang/DCRNN?color=critical&style=social) [Pytorch](https://github.com/chnsh/DCRNN_PyTorch) |ICLR 2018

# [Multivariable Probabilistic Time Series Forecasting](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-: | - |
| Paper Nums:40+ | | | | | |
| probability | Exchange
ILI
ETT
Electricity
Traffic
Weather | TMDM | [Transformer-Modulated Diffusion Models for Probabilistic Multivariate Time Series Forecasting](https://openreview.net/forum?id=qae04YACHs) | None | ICLR 2024
| probability | Exchange
Solar
Electricity
Traffic
Taxi
Wikipedia | VQ-TR | [VQ-TR: Vector Quantized Attention for Time Series Forecasting](https://openreview.net/forum?id=IxpTsFS7mh) | None | ICLR 2024
| Conformer | COVID-19 | CopulaCPTS | [Copula Conformal prediction for multi-step time series prediction](https://epubs.siam.org/doi/abs/10.1137/1.9781611977653.ch54) | [Pytorch](hhttps://github.com/Rose-STL-Lab/CopulaCPTS)
![Stars](https://img.shields.io/github/stars/Rose-STL-Lab/CopulaCPTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Rose-STL-Lab/CopulaCPTS?color=critical&style=social) | ICLR 2024
| probability | Solar
Electricity
Traffic
Taxi
Wikipedia | LDT | [ Latent Diffusion Transformer for Probabilistic Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/29085) | None | AAAI 2024
| probability | Solar
Electricity
Traffic
Exchange
M4-Hourly
UberTLC
KDDCup
Wikipedia | TSDiff | [Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting](https://proceedings.neurips.cc/paper_files/paper/2023/hash/5a1a10c2c2c9b9af1514687bc24b8f3d-Abstract-Conference.html) | [GluonTS](https://github.com/amazon-science/unconditional-time-series-diffusion)
![Stars](https://img.shields.io/github/stars/amazon-science/unconditional-time-series-diffusion?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/amazon-science/unconditional-time-series-diffusion?color=critical&style=social) | NIPS 2023
| Quantile | Electricity
Kaggle
M4-daily
Traffic
Wiki | Ensemble | [Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting](https://proceedings.mlr.press/v202/hasson23a.html) | None | ICML 2023
| Quantile | Boston
Concrete
kin8nm
Power
Protein
Wine
M5 | BVAE | [Neural Spline Search for Quantile Probabilistic Modeling](https://ojs.aaai.org/index.php/AAAI/article/view/26184) | None | AAAI 2023
| Quantile | Traffc
Electricity
Solar Energy | pTSE | [pTSE: A Multi-model Ensemble Method for Probabilistic Time Series Forecasting](https://www.ijcai.org/proceedings/2023/521) | None| IJCAI 2023
| probability | PEMS03
PEMS04
PEMS07
PEMS08 | DeepSTUQ | [Uncertainty Quantification for Traffic Forecasting: A Unified Approach](https://doi.org/10.1109/ICDE55515.2023.00081) | None| ICDE 2023
| probability | Electricity
Traffc
Solar
Exchange
M4 | PDTrans | [Probabilistic Decomposition Transformer for Time Series Forecasting](https://epubs.siam.org/doi/abs/10.1137/1.9781611977653.ch54) | [Pytorch](hhttps://github.com/JL-tong/PDTrans)
![Stars](https://img.shields.io/github/stars/JL-tong/PDTrans?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/JL-tong/PDTrans?color=critical&style=social) | SDM 2023
| probability | Taxi

Electricity Traffc
Exchange | COPDEEPAR | [Coherent Probabilistic Forecasting of Temporal Hierarchies](https://proceedings.mlr.press/v206/rangapuram23a.html) | [GluonTS](https://github.com/awslabs/gluonts/tree/dev/src/gluonts/nursery/temporal_hierarchical_forecasting/model) | AISTATS 2023
| probability | Traffic
Electricity
Weather
ETT
Wind | BVAE | [Generative Time Series Forecasting with Diffusion, Denoise, and Disentanglement](https://openreview.net/forum?id=rG0jm74xtx) | [Paddle](https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/D3VAE) | NeurIPS 2022
| probability & | Stock Price
Wind Speed| Volat | [Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes](https://proceedings.mlr.press/v162/benton22a.html) | [Pytorch,GPyTorch](https://github.com/g-benton/Volt)
![Stars](https://img.shields.io/github/stars/g-benton/Volt?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/g-benton/Volt?color=critical&style=social) | ICML 2022
| probability &
Point &
Others | electricity
Yacht
Boston, etc | AQF | [Autoregressive Quantile Flows for Predictive Uncertainty Estimation](https://openreview.net/forum?id=z1-I6rOKv1S) | None | ICLR 2022
| probability | IRIS
Digits
EightSchools | EMF | [Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling](https://openreview.net/forum?id=9pEJSVfDbba) | [Pytorch](https://github.com/gisilvs/EmbeddedModelFlows)
![Stars](https://img.shields.io/github/stars/gisilvs/EmbeddedModelFlows?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/gisilvs/EmbeddedModelFlows?color=critical&style=social) | ICLR 2022
| probability | Bike Sharing
UCI
NYU Depth v2 | NatPN | [Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions](https://www.in.tum.de/daml/natpn/) | [Pytorch](https://github.com/borchero/natural-posterior-network)
![Stars](https://img.shields.io/github/stars/borchero/natural-posterior-network?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/borchero/natural-posterior-network?color=critical&style=social) | ICLR 2022
| probability | Carbon
Concrete
Energy
Housing,etc | β−NLL | [On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks](https://openreview.net/forum?id=aPOpXlnV1T) | [Pytorch](https://github.com/martius-lab/beta-nll)
![Stars](https://img.shields.io/github/stars/martius-lab/beta-nll?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/martius-lab/beta-nll?color=critical&style=social) | ICLR 2022
| probability & Point | CDP
SLD | STZINB-GNN | [Uncertainty Quantification of Sparse Travel Demand Prediction with Spatial-Temporal Graph Neural Networks](https://doi.org/10.1145/3534678.3539093) | [Pytorch](https://github.com/ZhuangDingyi/STZINB)
![Stars](https://img.shields.io/github/stars/ZhuangDingyi/STZINB?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ZhuangDingyi/STZINB?color=critical&style=social) | KDD 2022
| probability & Point | Sichuan
Panama | PrEF | [PrEF: Probabilistic Electricity Forecasting via Copula-Augmented State Space Model](https://aaai-2022.virtualchair.net/poster_aisi7128) | None | AAAI 2022
| probability | ETT
Solar
Electricity | KLST | [Coherent Probabilistic Aggregate Queries on Long-horizon Forecasts](https://doi.org/10.24963/ijcai.2022/404) | [Pytorch](https://github.com/pratham16cse/AggForecaster)
![Stars](https://img.shields.io/github/stars/pratham16cse/AggForecaster?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/pratham16cse/AggForecaster?color=critical&style=social) | IJCAI 2022
| probability | Exchange
Solar
Electricity
Traffic
Wiki | EMSSM | [Memory Augmented State Space Model for Time Series Forecasting](https://doi.org/10.24963/ijcai.2022/479) | None | IJCAI 2022
| Prediction
Intervals | DMV
Census
Forest
Power | Evaluation | [Prediction Intervals for Learned Cardinality Estimation: An Experimental Evaluation](https://doi.org/10.24963/ijcai.2022/404) | None | ICDE 2022
| Periodic Forecasting | ETT
Weather | DeepFS | [Bridging Self-Attention and Time Series Decomposition for Periodic Forecasting](https://doi.org/10.1145/3511808.3557077) | None | CIKM 2022
| probability | Electricity
Traffic
Wiki
M4 | ISQF | [Learning Quantile Functions without Quantile Crossing for Distribution-free Time Series Forecasting](https://proceedings.mlr.press/v151/park22a.html) | [GluonTS](https://github.com/awslabs/gluonts/blob/4fef7e26470d15096b11b005be846dedf87fb736/src/gluonts/torch/distributions/isqf.py) | AISTATS 2022
| probability | M4
Traffic
Electricity | Robust | [Robust Probabilistic Time Series Forecasting](https://arxiv.org/abs/2202.11910) | [GluonTS](https://github.com/tetrzim/robust-probabilistic-forecasting) | AISTATS 2022
| probability | Electricity
Traffic
M4 | MQF | [Multivariate Quantile Function Forecaster](https://arxiv.org/pdf/2202.11316.pdf) | [GluonTS](https://github.com/awslabs/gluon-ts/tree/master/src/GluonTS/torch/model/mqf2) | AISTATS 2022
| probability | Electricity
Traffic
Wiki
Azure | C2FAR | [C2FAR: Coarse-to-Fine Autoregressive Networks for Precise Probabilistic Forecasting](https://openreview.net/forum?id=lHuPdoHBxbg) | [Future](https://github.com/huaweicloud/c2far_forecasting) | AISTATS 2022
| Imputation &
Probabilistic | PhysioNet
Air Quality | CSDI | [CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation](https://proceedings.neurips.cc/paper/2021/hash/cfe8504bda37b575c70ee1a8276f3486-Abstract.html) | [Pytorch](https://github.com/ermongroup/CSDI)
![Stars](https://img.shields.io/github/stars/ermongroup/CSDI?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ermongroup/CSDI?color=critical&style=social) | NeurIPS 2021
| probability | MIMIC-III
EEG
COVID-19 | CF-RNN | [Conformal Time-series Forecasting](https://proceedings.neurips.cc/paper/2021/hash/312f1ba2a72318edaaa995a67835fad5-Abstract.html) | [Pytorch](https://github.com/kamilest/conformal-rnn)
![Stars](https://img.shields.io/github/stars/kamilest/conformal-rnn?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/kamilest/conformal-rnn?color=critical&style=social) | NeurIPS 2021
| probability | CDC Flu | EPIFNP | [When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting](https://proceedings.neurips.cc/paper/2021/hash/a4a1108bbcc329a70efa93d7bf060914-Abstract.html) | [Pytorch](https://github.com/AdityaLab/EpiFNP)
![Stars](https://img.shields.io/github/stars/AdityaLab/EpiFNP?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/AdityaLab/EpiFNP?color=critical&style=social) | NeurIPS 2021
| probability | Basketball
Weather| GLIM | [Probability Paths and the Structure of Predictions over Time](https://proceedings.neurips.cc/paper/2021/hash/7f53f8c6c730af6aeb52e66eb74d8507-Abstract.html) | [R](https://github.com/ItsMrLin/probability-paths) | NeurIPS 2021
| probability | Facebook
Meps
Star
Bike ,etc | LSF | [Probabilistic Forecasting: A Level-Set Approach](https://proceedings.neurips.cc/paper/2021/hash/32b127307a606effdcc8e51f60a45922-Abstract.html) | [GluonTS](https://github.com/awslabs/gluon-ts/tree/master/src/GluonTS/model/rotbaum) | NeurIPS 2021
| probability | Solar
Electricity
Traffic
Taxi
Wikipedia | ProTran | [Probabilistic Transformer For Time Series Analysis](https://proceedings.neurips.cc/paper/2021/hash/c68bd9055776bf38d8fc43c0ed283678-Abstract.html) | None | NeurIPS 2021
| Prediction
Intervals | Solar
Wind | EnbPI | [Conformal prediction interval for dynamic time-series](http://proceedings.mlr.press/v139/xu21h.html) | [Pytorch](https://github.com/hamrel-cxu/EnbPI)
![Stars](https://img.shields.io/github/stars/hamrel-cxu/EnbPI?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hamrel-cxu/EnbPI?color=critical&style=social) | ICML 2021
| probability | Exchange
Solar
Electricity
Traffic
Taxi
Wiki | TimeGrad | [Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting](http://proceedings.mlr.press/v139/rasul21a.html) | [Pytorch](https://github.com/zalandoresearch/pytorch-ts)
![Stars](https://img.shields.io/github/stars/zalandoresearch/pytorch-ts?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zalandoresearch/pytorch-ts?color=critical&style=social) | ICML 2021
| probability & Point | PEMS03
PEMS04
PEMS07
PEMS08
Electricity
Traffic , etc | AGCGRU | [RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting](https://proceedings.mlr.press/v139/pal21b.html) | [TF](https://github.com/networkslab/rnn_flow)
![Stars](https://img.shields.io/github/stars/networkslab/rnn_flow?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/networkslab/rnn_flow?color=critical&style=social) | ICML 2021
| probability | Tourism
Labour
Traffic
Wiki
Electricity
Traffic , etc | Hier-E2E | [End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time Series](http://proceedings.mlr.press/v139/rangapuram21a.html) | [MXNet](https://github.com/rshyamsundar/GluonTS-hierarchical-ICML-2021) | ICML 2021
| probability | Sine
MNIST
Billiards
S&P
Stock | Whittle | [Whittle Networks: A Deep Likelihood Model for Time Series](http://proceedings.mlr.press/v139/yu21c.html) | [TF](https://github.com/ml-research/WhittleNetworks)
![Stars](https://img.shields.io/github/stars/ml-research/WhittleNetworks?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ml-research/WhittleNetworks?color=critical&style=social) | ICML 2021
| probability | METR-LA
PEMS-BAY
PMU | GTS | [Discrete Graph Structure Learning for Forecasting Multiple Time Series](https://openreview.net/forum?id=WEHSlH5mOk) | [Pytorch](https://github.com/chaoshangcs/GTS)
![Stars](https://img.shields.io/github/stars/chaoshangcs/GTS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/chaoshangcs/GTS?color=critical&style=social) | ICLR 2021
| probability & Point| Exchange
Solar
Electricity
Traffic
Taxi
Wikipedia | MAF | [Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows](https://openreview.net/forum?id=WiGQBFuVRv) | [Pytorch](https://github.com/zalandoresearch/pytorch-ts)
![Stars](https://img.shields.io/github/stars/zalandoresearch/pytorch-ts?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zalandoresearch/pytorch-ts?color=critical&style=social) | ICLR 2021
| probability | MNIST
PhysioNet2012 | PNCNN | [Probabilistic Numeric Convolutional Neural Networks](https://openreview.net/forum?id=T1XmO8ScKim) | None | ICLR 2021
| probability & Point | Energy
Wine
Power
MSD, etc | PGBM | [Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression](https://dl.acm.org/doi/10.1145/3447548.3467278) | [Pytorch](https://github.com/elephaint/pgbm)
![Stars](https://img.shields.io/github/stars/elephaint/pgbm?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/elephaint/pgbm?color=critical&style=social) | KDD 2021
| probability | DiDICD | TrajNet | [TrajNet: A Trajectory-Based Deep Learning Model for Traffic Prediction](https://doi.org/10.1145/3447548.3467236) | None | KDD 2021
| probability | Air Quality
METR-LA
COVID-19 | UQ | [Quantifying Uncertainty in Deep Spatiotemporal Forecasting](https://doi.org/10.1145/3447548.3467325) | [Pytorch](https://github.com/DongxiaW/Quantifying_Uncertainty_in_Deep_Spatiotemporal_Forecasting)
![Stars](https://img.shields.io/github/stars/DongxiaW/Quantifying_Uncertainty_in_Deep_Spatiotemporal_Forecasting?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/DongxiaW/Quantifying_Uncertainty_in_Deep_Spatiotemporal_Forecasting?color=critical&style=social) | KDD 2021
| probability | Electricity
Traffic
Environment
Air Quality
Dewpoint,etc| VSMHN | [Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/17023) | [Pytorch](https://github.com/longyuanli/VSMHN)
![Stars](https://img.shields.io/github/stars/longyuanli/VSMHN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/longyuanli/VSMHN?color=critical&style=social) | AAAI 2021
| probability & Point | Traffic
Electricity
Wiki
Solar
Taxi | TLAE | [Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/17101) | None | AAAI 2021
| probability | Patient EHR
Public Health | UNITE | [UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data](https://doi.org/10.1145/3442381.3450087) | [Pytorch](https://github.com/Chacha-Chen/UNITE)
![Stars](https://img.shields.io/github/stars/Chacha-Chen/UNITE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Chacha-Chen/UNITE?color=critical&style=social) | WWW 2021
| probability | Exchange
Solar
Electricity
Traffic
Wiki | ARSGLS | [Deep Rao-Blackwellised Particle Filters for Time Series Forecasting](https://proceedings.neurips.cc/paper/2020/hash/afb0b97df87090596ae7c503f60bb23f-Abstract.html) | None | NeurIPS 2020
| probability | Electricity
Traffic
Wind
Solar
M4 | AST | [Adversarial Sparse Transformer for Time Series Forecasting](https://proceedings.neurips.cc/paper/2020/hash/c6b8c8d762da15fa8dbbdfb6baf9e260-Abstract.html) | [Pytorch](https://github.com/hihihihiwsf/AST)
![Stars](https://img.shields.io/github/stars/hihihihiwsf/AST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hihihihiwsf/AST?color=critical&style=social) | NeurIPS 2020
| probability | Traffic
Electricity | STRIPE | [Probabilistic Time Series Forecasting with Shape and Temporal Diversity](https://papers.NeurIPS.cc/paper/2020/hash/2f2b265625d76a6704b08093c652fd79-Abstract.html) | [Pytorch](https://github.com/vincent-leguen/STRIPE)
![Stars](https://img.shields.io/github/stars/vincent-leguen/STRIPE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/vincent-leguen/STRIPE?color=critical&style=social) | NeurIPS 2020
| probability | Exchange
Solar
Electricity
Wiki
Traffic | NKF | [Normalizing Kalman Filters for Multivariate Time Series Analysis](https://proceedings.neurips.cc/paper/2020/hash/1f47cef5e38c952f94c5d61726027439-Abstract.html) | None | NeurIPS 2020
| quantile | MIMIC-III | BJRNN | [Frequentist Uncertainty in RNNs via Blockwise Influence Functions](http://proceedings.mlr.press/v119/alaa20b.html) | [Pytorch](https://github.com/ahmedmalaa/rnn-blockwise-jackknife)
![Stars](https://img.shields.io/github/stars/ahmedmalaa/rnn-blockwise-jackknife?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ahmedmalaa/rnn-blockwise-jackknife?color=critical&style=social) | ICML 2020
| probability | S&P 500
Electricity | Monte-Carlo | [Adversarial Attacks on Probabilistic Autoregressive Forecasting Models](https://proceedings.mlr.press/v119/dang-nhu20a.html) | [Pytorch](https://github.com/eth-sri/probabilistic-forecasts-attacks)
![Stars](https://img.shields.io/github/stars/eth-sri/probabilistic-forecasts-attacks?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/eth-sri/probabilistic-forecasts-attacks?color=critical&style=social) | ICML 2020
| probability | Boston
Concrete
Energy
Kin8nm
Naval, etc | NGBoost | [NGBoost: Natural Gradient Boosting for Probabilistic Prediction](http://proceedings.mlr.press/v119/duan20a.html) | [Python](https://github.com/stanfordmlgroup/ngboost)
![Stars](https://img.shields.io/github/stars/stanfordmlgroup/ngboost?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/stanfordmlgroup/ngboost?color=critical&style=social) | ICML 2020
| probability | Physionet
NHIS | DME | [Deep Mixed Effect Model Using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare](https://ojs.aaai.org/index.php/AAAI/article/view/5773) | [Pytorch](https://github.com/jik0730/Deep-Mixed-Effect-Model-using-Gaussian-Processes)
![Stars](https://img.shields.io/github/stars/jik0730/Deep-Mixed-Effect-Model-using-Gaussian-Processes?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/jik0730/Deep-Mixed-Effect-Model-using-Gaussian-Processes?color=critical&style=social) | AAAI 2020
| probability | Exchange
Solar
Electricity
Traffic
NYCTaxi
Wikipedia | copula | [High-dimensional multivariate forecasting with low-rank Gaussian Copula Processes](https://proceedings.neurips.cc/paper/2019/hash/0b105cf1504c4e241fcc6d519ea962fb-Abstract.html) | [GluonTS](https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release) | NeurIPS 2019
| probability | Electricity
Traffic
NYCTaxi
Uber | DF | [Deep Factors for Forecasting](https://proceedings.mlr.press/v97/wang19k.html) | None | ICML 2019
| probability | Weather | DUQ | [Deep Uncertainty Quantification: A Machine Learning Approach for Weather Forecasting](https://doi.org/10.1145/3292500.3330704) | [Keras](https://github.com/BruceBinBoxing/Deep_Learning_Weather_Forecasting)
![Stars](https://img.shields.io/github/stars/BruceBinBoxing/Deep_Learning_Weather_Forecasting?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/BruceBinBoxing/Deep_Learning_Weather_Forecasting?color=critical&style=social) | KDD 2019
| probability | JD50K | framework | [Multi-Horizon Time Series Forecasting with Temporal Attention Learning](https://doi.org/10.1145/3292500.3330662) | None | KDD 2019
| probability | MIMIC-III | TPF | [Temporal Probabilistic Profiles for Sepsis Prediction in the ICU](https://doi.org/10.1145/3292500.3330747) | None | KDD 2019
| probability | Electricity
Traffic
Wiki
Dom | SQF | [Probabilistic Forecasting with Spline Quantile Function RNNs](https://proceedings.mlr.press/v89/gasthaus19a.html) | None | AISTATS 2019
| probability | More | More | [https://github.com/zzw-zwzhang/Awesome-of-Time-Series-Prediction](https://github.com/zzw-zwzhang/Awesome-of-Time-Series-Prediction) | More |

# [Time Series Imputation](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-: | - |
| Paper Nums: 30+ | | | | | |
| ImputeFormer | METR-LA
PEMS-BAY
PEMS03478
Solar
CER-EN
AQI | ImputeFormer | [ImputeFormer: Low Rankness-Induced Transformers for Generalizable Spatiotemporal Imputation](https://dl.acm.org/doi/abs/10.1145/3637528.3671751) | [Pytorch](https://github.com/tongnie/ImputeFormer)
![Stars](https://img.shields.io/github/stars/tongnie/ImputeFormer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tongnie/ImputeFormer?color=critical&style=social) | KDD 2024
| Imputation | AirQuality
Stocks
Electricity
Energy | CTA | [Continuous-time Autoencoders for Regular and Irregular Time Series Imputation](https://proceedings.mlr.press/v202/chen23f.html) | [Pytorch](https://github.com/hyowonwi/CTA)
![Stars](https://img.shields.io/github/stars/hyowonwi/CTA?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hyowonwi/CTA?color=critical&style=social) | WSDM 2024
| Imputation | PM2.5
PhysioNet | CSBI | [Provably Convergent Schrödinger Bridge with Applications to Probabilistic Time Series Imputation](https://proceedings.mlr.press/v202/chen23f.html) | [Pytorch](https://github.com/morganstanley/MSML)
![Stars](https://img.shields.io/github/stars/morganstanley/MSML?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/morganstanley/MSML?color=critical&style=social) | ICML 2023
| Imputation | MIMIC-III
PhysioNet | MNAR | [Probabilistic Imputation for Time-series Classification with Missing Data](https://proceedings.mlr.press/v202/kim23m.html) | [TF](https://github.com/yuneg11/SupNotMIWAE-with-ObsDropout)
![Stars](https://img.shields.io/github/stars/yuneg11/SupNotMIWAE-with-ObsDropout?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yuneg11/SupNotMIWAE-with-ObsDropout?color=critical&style=social) | ICML 2023
| Imputation | Guangzhou
Solar-energy
Westminster | TIDER
(EncDec,AR) | [Multivariate Time-series Imputation with Disentangled Temporal Representations](https://openreview.net/forum?id=rdjeCNUS6TG) | [Pytorch](https://anonymous.4open.science/r/TIDER-527C/readme.md) | ICLR 2023
| Imputation | COVID-19
AQ36
PeMS-BA
PeMS-LA
PeMS-SD| PoGeVon | [Networked Time Series Imputation via Position-aware Graph Enhanced Variational Autoencoders](https://dl.acm.org/doi/abs/10.1145/3580305.3599444) | [Author](https://github.com/Derek-Wds) | KDD 2023
| Imputation | PhysioNet
Human Activity | Warpformer | [Warpformer: A Multi-scale Modeling Approach for Irregular Clinical Time Series](https://dl.acm.org/doi/10.1145/3580305.3599543) | [Pytorch](https://github.com/imJiawen/Warpformer)
![Stars](https://img.shields.io/github/stars/imJiawen/Warpformer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/imJiawen/Warpformer?color=critical&style=social) | KDD 2023
| Imputation | Air Quality
METR-LA
PEMS-BAY | PriSTI | [PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation](https://arxiv.org/abs/2302.09746) | [Pytorch](https://github.com/LMZZML/PriSTI)
![Stars](https://img.shields.io/github/stars/LMZZML/PriSTI?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LMZZML/PriSTI?color=critical&style=social) | ICDE 2023
| Imputation | PhysioNet12
PhysioNet19
MIMIC-III | DA-TASWDM | [Density-Aware Temporal Attentive Step-wise Diffusion Model For Medical Time Series Imputation](https://dl.acm.org/doi/10.1145/3583780.3614840) | None | CIKM 2023
| Imputation | TEDDY
CAMELS | TSEst | [Attention-Based Multi-modal Missing Value Imputation for Time Series Data with High Missing Rate](hhttps://epubs.siam.org/doi/abs/10.1137/1.9781611977653.ch53) | [Pytorch](https://github.com/compbiolabucf/TSEst)
![Stars](https://img.shields.io/github/stars/compbiolabucf/TSEst?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/compbiolabucf/TSEst?color=critical&style=social) | SDM 2023
| Imputation | Air Quality
METR-LA
PEMS-BAY
CER-E | GRIN
(EncDec,AR) | [Filling the G_ap_s-Multivariate Time Series Imputation by Graph Neural Networks](https://openreview.net/forum?id=kOu3-S3wJ7) | [Pytorch](https://github.com/Graph-Machine-Learning-Group/grin)
![Stars](https://img.shields.io/github/stars/Graph-Machine-Learning-Group/grin?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Graph-Machine-Learning-Group/grin?color=critical&style=social) | ICLR 2022
| Imputation | PhysioNet
MIMIC-III
Climate | HeTVAE
(Attn,VAE) | [Heteroscedastic Temporal Variational Autoencoder For Irregularly Sampled Time Series](https://openreview.net/forum?id=Az7opqbQE-3) | [Pytorch](https://github.com/reml-lab/hetvae)
![Stars](https://img.shields.io/github/stars/reml-lab/hetvae?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/reml-lab/hetvae?color=critical&style=social) | ICLR 2022
| Imputation | MIMIC-III
OPHTHALMIC
MNIST Physionet
| GIL
(AR,Attn,
GRADIENT LEARNING) | [Gradient Importance Learning for Incomplete Observations](https://openreview.net/forum?id=fXHl76nO2AZ) | [TF](https://github.com/gaoqitong/gradient-importance-learning)
![Stars](https://img.shields.io/github/stars/gaoqitong/gradient-importance-learning?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/gaoqitong/gradient-importance-learning?color=critical&style=social) | ICLR 2022
| Imputation | Chlorine level
SML2010
Air Quality | D-NLMC | [Dynamic Nonlinear Matrix Completion for Time-Varying Data Imputation](https://aaai-2022.virtualchair.net/poster_aaai12088) | [Matlab](https://github.com/jicongfan)
Author
Github | AAAI 2022
| Imputation | COMPAS
Adult
HSLS | ME | [Online Missing Value Imputation and Change Point Detection with the Gaussian Copula](https://aaai-2022.virtualchair.net/poster_aaai6237) | [gcimpute](https://github.com/yuxuanzhao2295/Online-Missing-Value-Imputation-and-Change-Point-Detection-with-the-Gaussian-Copula) | AAAI 2022
| Imputation | Fair MIP Forest | | [Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values](https://ojs.aaai.org/index.php/AAAI/article/view/21189) | None | AAAI 2022
| Imputation | Chengdu
New York | STCPA | [Traffic Speed Imputation with Spatio-Temporal Attentions and Cycle-Perceptual Training](https://doi.org/10.1145/3511808.3557480) | [Pytorch](https://github.com/Sam1224/STCPA)
![Stars](https://img.shields.io/github/stars/Sam1224/STCPA?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Sam1224/STCPA?color=critical&style=social) | CIKM 2022
| Imputation | Nanjingyby
PEMS08 | AST-CMCN | [Generative-Free Urban Flow Imputation](https://doi.org/10.1145/3511808.3557334) | SenzhangWang | CIKM 2022
| Imputation | Foursquare
Gowalla | MDI-MG | [Multi-task Generative Adversarial Network for Missing Mobility Data Imputation](https://doi.org/10.1145/3511808.3557654) | None | CIKM 2022
| Imputation | Self-defined | MACRO | [Multi-Graph Convolutional Recurrent Network for Fine-Grained Lane-Level Traffic Flow Imputation](https://ieeexplore.ieee.org/document/10027759) | [Pytorch](https://github.com/Jingci/MACRO)
![Stars](https://img.shields.io/github/stars/Jingci/MACRO?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Jingci/MACRO?color=critical&style=social) | ICDM 2022
| Imputation | Physionet
MIMIC-III
Human Activity | mTAND | [Multi-Time Attention Networks for Irregularly Sampled Time Series](https://openreview.net/forum?id=4c0J6lwQ4_) | [Pytorch](https://github.com/reml-lab/mTAN)
![Stars](https://img.shields.io/github/stars/reml-lab/mTAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/reml-lab/mTAN?color=critical&style=social) | ICLR 2021
| Imputation | METR-LA
NREL
USHCN
SeData | IGNNK | [Inductive Graph Neural Networks for Spatiotemporal Kriging](https://ojs.aaai.org/index.php/AAAI/article/view/16575) | [Pytorch](https://github.com/Kaimaoge/IGNNK)
![Stars](https://img.shields.io/github/stars/Kaimaoge/IGNNK?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Kaimaoge/IGNNK?color=critical&style=social) | AAAI 2021
| Imputation | Activity
PhysioNet
Air Quality | SSGAN | [Generative Semi-supervised Learning for Multivariate Time Series Imputation](https://ojs.aaai.org/index.php/AAAI/article/view/17086) | [Pytorch](https://github.com/zjuwuyy-DL/Generative-Semi-supervised-Learning-for-Multivariate-Time-Series-Imputation)
![Stars](https://img.shields.io/github/stars/zjuwuyy-DL/Generative-Semi-supervised-Learning-for-Multivariate-Time-Series-Imputation?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zjuwuyy-DL/Generative-Semi-supervised-Learning-for-Multivariate-Time-Series-Imputation?color=critical&style=social) | AAAI 2021
| Imputation &
Multivariable | PhysioNet
Air Quality | CSDI | [CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation](https://proceedings.neurips.cc/paper/2021/hash/cfe8504bda37b575c70ee1a8276f3486-Abstract.html) | [Pytorch](https://github.com/ermongroup/CSDI)
![Stars](https://img.shields.io/github/stars/ermongroup/CSDI?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ermongroup/CSDI?color=critical&style=social) | NeurIPS 2021
| Imputation &
Prediction | VevoMusic
WikiTraffic
Los-Loop
SZ-Taxi | Radflow | [Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of Time Series](https://dl.acm.org/doi/10.1145/3442381.3449945) | [Pytorch](https://github.com/alasdairtran/radflow)
![Stars](https://img.shields.io/github/stars/alasdairtran/radflow?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/alasdairtran/radflow?color=critical&style=social) | WWW 2021
| Imputation | PhysioNet
Air Quality
Gas Sensor | STING | [STING: Self-attention based Time-series Imputation Networks using GAN](https://ieeexplore.ieee.org/abstract/document/9679183) | None | ICDM 2021
| Imputation | Zero
MICE
SoftImpute
GMMC
GAIN | SN | [Why Not to Use Zero Imputation? Correcting Sparsity Bias in Training Neural Networks](https://openreview.net/forum?id=BylsKkHYvH) | [Future](https://github.com/JoonyoungYi/sparsity-normalization) | ICLR 2020
| Imputation | Beijing Air
PhysioNet
Porto Taxi
London Weather | LGnet | [Joint Modeling of Local and Global Temporal Dynamics for Multivariate Time Series Forecasting with Missing Values](https://ojs.aaai.org/index.php/AAAI/article/view/6056) | None | AAAI 2020
| Imputation | Sydney
Melbourne
Brisbane
Perth, etc | SMV-NMF | [A spatial missing value imputation method for multi-view urban statistical data](https://www.ijcai.org/Proceedings/2020/0182.pdf) | [Matlab](https://github.com/SMV-NMF/SMV-NMF) | IJCAI 2020
| Imputation | PhysioNet
Air Quality
Wind | GANGRUI | [Adversarial Recurrent Time Series Imputation](https://ieeexplore.ieee.org/abstract/document/9158560/) | None | TNNLS 2020
| Imputation | Healthcare
Climate | GRU-ODE-Bayes | [GRU-ODE-Bayes: Continuous Modeling of Sporadically-Observed Time Series](https://proceedings.neurips.cc/paper/2019/hash/455cb2657aaa59e32fad80cb0b65b9dc-Abstract.html) | [Pytorch](https://github.com/edebrouwer/gru_ode_bayes)
![Stars](https://img.shields.io/github/stars/edebrouwer/gru_ode_bayes?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/edebrouwer/gru_ode_bayes?color=critical&style=social) | NeurIPS 2019
| Imputation | Toy | LatenODE | [Latent Ordinary Differential Equations for Irregularly-Sampled Time Series](https://proceedings.neurips.cc/paper/2019/hash/42a6845a557bef704ad8ac9cb4461d43-Abstract.html) | [Pytorch](https://github.com/YuliaRubanova/latent_ode)
![Stars](https://img.shields.io/github/stars/YuliaRubanova/latent_ode?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/YuliaRubanova/latent_ode?color=critical&style=social) | NeurIPS 2019
| Imputation | Sines
Stocks
Energy
Events | TimeGAN | [Time-series Generative Adversarial Networks](https://proceedings.neurips.cc/paper/2019/hash/c9efe5f26cd17ba6216bbe2a7d26d490-Abstract.html) | [TF](https://github.com/jsyoon0823/TimeGAN)
![Stars](https://img.shields.io/github/stars/jsyoon0823/TimeGAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/jsyoon0823/TimeGAN?color=critical&style=social) | NeurIPS 2019
| Imputation | MIMIC-III
UWaveGesture | Inter-net | [Interpolation-Prediction Networks for Irregularly Sampled Time Series](https://openreview.net/forum?id=r1efr3C9Ym) | [Keras](https://github.com/mlds-lab/interp-net)
![Stars](https://img.shields.io/github/stars/mlds-lab/interp-net?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/mlds-lab/interp-net?color=critical&style=social) | ICLR 2019
| Imputation | PhysioNet
KDD2018 | E2gan | [E2gan: End-to-end generative adversarial network for multivariate time series imputation](https://www.ijcai.org/Proceedings/2019/0429.pdf) | [TF](https://github.com/Luoyonghong/E2EGAN)
![Stars](https://img.shields.io/github/stars/Luoyonghong/E2EGAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Luoyonghong/E2EGAN?color=critical&style=social) | IJCAI 2019
| Imputation | EC
RV | STI | [How Do Your Neighbors Disclose Your Information: Social-Aware Time Series Imputation](https://doi.org/10.1145/3308558.3313714) | [Pytorch](https://github.com/tomstream/STI)
![Stars](https://img.shields.io/github/stars/tomstream/STI?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tomstream/STI?color=critical&style=social) | WWW 2019

# [Time Series Anomaly Detection](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-: | - |
| Paper Nums: 30+ | | | | | |
| Anomaly Detection | Yahoo
KPI
WSD
NAB | FCVAE | [Revisiting VAE for Unsupervised Time Series Anomaly Detection: A Frequency Perspective](https://dl.acm.org/doi/abs/10.1145/3589334.3645710) | [Pytorch](https://github.com/CSTCloudOps/FCVAE)
![Stars](https://img.shields.io/github/stars/CSTCloudOps/FCVAE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/CSTCloudOps/FCVAE?color=critical&style=social) | WWW 2024
| Anomaly Detection | TODS
ASD
ECG
PSM
CompanyA | Dual-TF | [Breaking the Time-Frequency Granularity Discrepancy in Time-Series Anomaly Detection](https://dl.acm.org/doi/10.1145/3589334.3645556) | [Pytorch](https://github.com/kaist-dmlab/DualTF)
![Stars](https://img.shields.io/github/stars/kaist-dmlab/DualTF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/kaist-dmlab/DualTF?color=critical&style=social) | WWW 2024
| Anomaly Detection | SMD
J-D1
J-D2
SMAP | LARA | [LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised Time Series Anomaly Detection](https://dl.acm.org/doi/10.1145/3589334.3645472) | None | WWW 2024
| Anomaly Detection | SWaT
WADI
PSM
SMD
MSL
SMAP
Crediy
Yahoo | | [When Model Meets New Normals: Test-Time Adaptation for Unsupervised Time-Series Anomaly Detection](https://ojs.aaai.org/index.php/AAAI/article/view/29210) | [Pytorch](https://github.com/ForestsKing/D3R)
![Stars](https://img.shields.io/github/stars/ForestsKing/D3R?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ForestsKing/D3R?color=critical&style=social) | AAAI 2024
| Anomaly Detection | SMD
MSL
SMAP
SWaT
PSM | MEMTO | [MEMTO: Memory-guided Transformer for Multivariate Time Series Anomaly Detection](https://proceedings.neurips.cc/paper_files/paper/2023/hash/b4c898eb1fb556b8d871fbe9ead92256-Abstract-Conference.html) | No | NIPS 2023
| Anomaly Detection | PSM
SMD
SWaT | D3R | [Drift doesn’t Matter: Dynamic Decomposition with Diffusion Reconstruction for Unstable Multivariate Time Series Anomaly Detection](https://proceedings.neurips.cc/paper_files/paper/2023/hash/22f5d8e689d2a011cd8ead552ed59052-Abstract-Conference.html) | [Pytorch](https://github.com/ForestsKing/D3R)
![Stars](https://img.shields.io/github/stars/ForestsKing/D3R?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ForestsKing/D3R?color=critical&style=social) | NIPS 2023
| Anomaly Detection |SWaT
WADI
PSM
MSL
SMD
trimSyn | Framework | [Nominality Score Conditioned Time Series Anomaly Detection by Point/Sequential Reconstruction](https://proceedings.neurips.cc/paper_files/paper/2023/hash/22f5d8e689d2a011cd8ead552ed59052-Abstract-Conference.html) | [Pytorch](https://github.com/andrewlai61616/NPSR)
![Stars](https://img.shields.io/github/stars/andrewlai61616/NPSR?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/andrewlai61616/NPSR?color=critical&style=social) | NIPS 2023
| Anomaly Detection | SMD
MSL
SMAP
PSM
DND| PUAD | [Prototype-oriented unsupervised anomaly detection for multivariate time series](https://proceedings.mlr.press/v202/li23d.html) | [Pytorch](https://github.com/LiYuxin321/PUAD)
![Stars](https://img.shields.io/github/stars/LiYuxin321/PUAD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LiYuxin321/PUAD?color=critical&style=social) | ICML 2023
| Anomaly Detection |UCR
SMD | surrogate | [Unsupervised Model Selection for Time Series Anomaly Detection](https://openreview.net/forum?id=gOZ_pKANaPW) | [Author](https://github.com/mononitogoswami) | ICLR 2023
| Anomaly Detection | MSL
SMAP
PSM
SMD | DCdetector | [DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection](https://dl.acm.org/doi/10.1145/3580305.3599295) | [Pytorch](https://github.com/DAMO-DI-ML/KDD2023-DCdetector)
![Stars](https://img.shields.io/github/stars/DAMO-DI-ML/KDD2023-DCdetector?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/DAMO-DI-ML/KDD2023-DCdetector?color=critical&style=social) | KDD 2023
| Anomaly Detection | MSL
SWaT
WADI | PoA | [Precursor-of-Anomaly Detection for Irregular Time Series](https://dl.acm.org/doi/10.1145/3580305.3599469) | [Pytorch](https://github.com/sheoyon-jhin/PAD)
![Stars](https://img.shields.io/github/stars/sheoyon-jhin/PAD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/sheoyon-jhin/PAD?color=critical&style=social) | KDD 2023
| Anomaly Detection | MSL
SWaT
PSM
SMAP
SMD | DiffAD | [Imputation-based Time-Series Anomaly Detection with Conditional Weight-Incremental Diffusion Models](https://doi.org/10.1145/3580305.3599391) | [Pytorch](https://github.com/ChunjingXiao/DiffAD)
![Stars](https://img.shields.io/github/stars/ChunjingXiao/DiffAD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ChunjingXiao/DiffAD?color=critical&style=social) | KDD 2023
| Anomaly Detection |SMD
SMAP
MSL
SWaT | DAEMON | [Adversarial Autoencoder for Unsupervised Time Series Anomaly Detection and Interpretation](https://doi.org/10.1145/3539597.3570371) | [Pytorch](https://github.com/Sherlock-C/DAEMON)
![Stars](https://img.shields.io/github/stars/Sherlock-C/DAEMON?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Sherlock-C/DAEMON?color=critical&style=social) | AAAI 2023
| Anomaly Detection | SWaT
WADI
PSM
MSL
SMD | MTGFlow | [Detecting Multivariate Time Series Anomalies with Zero Known Label](https://ojs.aaai.org/index.php/AAAI/article/view/25623) | [Pytorch](https://github.com/zqhang/MTGFLOW)
![Stars](https://img.shields.io/github/stars/zqhang/MTGFLOW?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zqhang/MTGFLOW?color=critical&style=social) | AAAI 2023
| Anomaly Detection | SWaT
WADI SMAP
MSL | DuoGAT | [DuoGAT: Dual Time-oriented Graph Attention Networks for Accurate, Efficient and Explainable Anomaly Detection on Time-series](https://dl.acm.org/doi/10.1145/3583780.3614857) | [Pytorch](https://github.com/ByeongtaePark/DuoGAT)
![Stars](https://img.shields.io/github/stars/ByeongtaePark/DuoGAT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ByeongtaePark/DuoGAT?color=critical&style=social) | CIKM 2023
| Anomaly Detection | SWaT
SMAP
MSL
PSM
SMD | MadSGM | [MadSGM: Multivariate Anomaly Detection with Score-based Generative Models](https://dl.acm.org/doi/10.1145/3583780.3614857) | None | CIKM 2023
| Anomaly Detection |SMD
Boiler | ContexTDA | [Context-aware Domain Adaptation for Time Series Anomaly Detection](https://epubs.siam.org/doi/abs/10.1137/1.9781611977653.ch76) | None| SDM 2023
| Anomaly Detection | AIOps
UCR | COCA | [Deep Contrastive One-Class Time Series Anomaly Detection](https://epubs.siam.org/doi/abs/10.1137/1.9781611977653.ch78) | [Merlion,Tsaug ](https://github.com/ruiking04/COCA)
![Stars](https://img.shields.io/github/stars/ruiking04/COCA?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ruiking04/COCA?color=critical&style=social) | SDM 2023
| Anomaly Detection | DND
SMD
MSL
SMAP | DVGCRN | [Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection](https://proceedings.mlr.press/v162/chen22x.html) | [Future](https://github.com/BoChenGroup) | ICML 2022
| Anomaly Detection | YelpChi
Amazon
T-Finance
T-Social | BWGNN | [Rethinking Graph Neural Networks for Anomaly Detection](https://proceedings.mlr.press/v162/tang22b.html) | [Pytorch](https://github.com/squareRoot3/Rethinking-Anomaly-Detection)
![Stars](https://img.shields.io/github/stars/squareRoot3/Rethinking-Anomaly-Detection?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/squareRoot3/Rethinking-Anomaly-Detection?color=critical&style=social) | ICML 2022
| Anomaly Detection | SMD
PSM
MSL&SMAP
SWaT
NeurIPS-TS | Anomaly Transformer | [Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy](https://openreview.net/forum?id=LzQQ89U1qm_) | [Pytorch](https://github.com/spencerbraun/anomaly_transformer_pytorch)
![Stars](https://img.shields.io/github/stars/spencerbraun/anomaly_transformer_pytorch?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/spencerbraun/anomaly_transformer_pytorch?color=critical&style=social) | ICLR 2022
| Density Estimation & Anomaly Detection | PMU-B
PMU-C
SWaT
METR-LA | GANF | [Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time Series](https://openreview.net/forum?id=45L_dgP48Vd) | [Pytorch](https://github.com/EnyanDai/GANF)
![Stars](https://img.shields.io/github/stars/EnyanDai/GANF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/EnyanDai/GANF?color=critical&style=social) | ICLR 2022
| Anomaly Detection | | | [Anomaly Detection for Tabular Data with Internal Contrastive Learning](https://openreview.net/forum?id=_hszZbt46bT) | None | ICLR 2022
| Anomaly Detection | Machine-Temp
NYCTaxi
Twitter
SWaT | algorithmic | [Local Evaluation of Time Series Anomaly Detection Algorithms](https://doi.org/10.1145/3534678.3539339) | [Python](https://github.com/ahstat/affiliation-metrics-py)
![Stars](https://img.shields.io/github/stars/ahstat/affiliation-metrics-py?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ahstat/affiliation-metrics-py?color=critical&style=social) | KDD 2022
| Anomaly Detection | SWaT
WADI
HAI | FuSAGNet | [Learning Sparse Latent Graph Representations for Anomaly Detection in Multivariate Time Series](https://doi.org/10.1145/3534678.3539117) | [Pytorch](https://github.com/sihohan/FuSAGNet)
![Stars](https://img.shields.io/github/stars/sihohan/FuSAGNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/sihohan/FuSAGNet?color=critical&style=social) | KDD 2022
| Anomaly Detection | Slef-defined | RCAD | [RCAD: Real-time Collaborative Anomaly Detection System for Mobile Broadband Networks](https://doi.org/10.1145/3534678.3539097) | [Pytorch](https://github.com/azza8903/HTM-MODEL_EXCHANGE/)
![Stars](https://img.shields.io/github/stars/azza8903/HTM-MODEL_EXCHANGE/?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/azza8903/HTM-MODEL_EXCHANGE/?color=critical&style=social) | KDD 2022
| Anomaly Detection | | AnomalyKiTS | [AnomalyKiTS-Anomaly Detection Toolkit for Time Series](https://aaai-2022.virtualchair.net/poster_dm318) | None | AAAI 2022
| Anomaly Detection | SWaT
WADI
MSL
SMAP
SMD | PA | [Towards a Rigorous Evaluation of Time-Series Anomaly Detection](https://aaai-2022.virtualchair.net/poster_aaai2239) | None | AAAI 2022
| Anomaly Detection | YAHOO
SMAP
MSL
PSM | NCAD | [Neural Contextual Anomaly Detection for Time Series](https://doi.org/10.24963/ijcai.2022/332) | [Future](https://github.com/awslabs/gluon-ts/tree/dev/src/gluonts/nursery) | IJCAI 2022
| Anomaly Detection | SWaT
WADI
SMD
PSM | GRELEN | [GRELEN: Multivariate Time Series Anomaly Detection from the Perspective of Graph Relational Learning](https://doi.org/10.24963/ijcai.2022/394) | None| IJCAI 2022
| Anomaly Detection | MSL
SMAP
MNIST
,etc | CADET | [CADET: Calibrated Anomaly Detection for Mitigating Hardness Bias](https://doi.org/10.24963/ijcai.2022/278) | [Future](https://github.com/d-ailin/CADET)| IJCAI 2022
| Anomaly Detection | ECG
HAR
MNIST | | [Understanding and Mitigating Data Contamination in Deep Anomaly Detection: A Kernel-based Approach](https://doi.org/10.24963/ijcai.2022/322) | None | IJCAI 2022
| Anomaly Detection | Business| SLA-VAE | [A Semi-Supervised VAE Based Active Anomaly Detection Framework in Multivariate Time Series for Online Systems](https://doi.org/10.1145/3485447.3511984) | None| WWW 2022
| Anomaly Detection | KDDCUP99
NSL
UNSW, etc | MemStream | [MemStream: Memory-Based Streaming Anomaly Detection](https://doi.org/10.1145/3485447.3511984) | [Pytorch](https://github.com/Stream-AD/MemStream)|
![Stars](https://img.shields.io/github/stars/Stream-AD/MemStream?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Stream-AD/MemStream?color=critical&style=social) WWW 2022
| Anomaly Detection | GD
HSS
ECG
NAB
Yahoo S5
2D
SYN | RDAE | [Robust and Explainable Autoencoders for Unsupervised Time Series Outlier Detection](https://ieeexplore.ieee.org/document/9835554) | [Author](https://github.com/tungk) | ICDE 2022
| Anomaly Detection | GD
HSS
ECG
TD
Yahoo S5 | BiVQRAEs | [Anomaly Detection in Time Series with Robust Variational Quasi-Recurrent Autoencoders](https://ieeexplore.ieee.org/document/9835268) | [Pytorch](https://github.com/tungk/Bi-VQRAE)
![Stars](https://img.shields.io/github/stars/tungk/Bi-VQRAE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tungk/Bi-VQRAE?color=critical&style=social) | ICDE 2022
| Anomaly Detection | SWaT
WADI
BATADAL | MAD-SGCN | [MAD-SGCN: Multivariate Anomaly Detection with Self-learning Graph Convolutional Networks](https://ieeexplore.ieee.org/abstract/document/9835470) | None | ICDE 2022
| Anomaly Detection | NAB
UCR
MBA
SMAP
MSL
SWaT
WADI
SMD
MSDS | TranAD | [TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data](https://doi.org/10.14778/3514061.3514067) | [Pytorch](https://github.com/imperial-qore/TranAD)
![Stars](https://img.shields.io/github/stars/imperial-qore/TranAD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/imperial-qore/TranAD?color=critical&style=social) | VLDB 2022
| Anomaly Detection | KPI
Yahoo
SMAP
MSL | TFAD | [TFAD: A Decomposition Time Series Anomaly Detection Architecture with Time-Frequency Analysis](https://doi.org/10.1145/3511808.3557470) | [Pytorch](https://github.com/damo-di-ml/cikm22-tfad)
![Stars](https://img.shields.io/github/stars/damo-di-ml/cikm22-tfad?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/damo-di-ml/cikm22-tfad?color=critical&style=social) | CIKM 2022
| Anomaly Detection | SMAP
MSL
SMD
KARI
Synthetic | Attack | [Towards an Awareness of Time Series Anomaly Detection Models' Adversarial Vulnerability](https://doi.org/10.1145/3511808.3557073) | [Pytorch](https://github.com/shahroztariq/Adversarial-Attacks-on-Timeseries)
![Stars](https://img.shields.io/github/stars/shahroztariq/Adversarial-Attacks-on-Timeseries?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/shahroztariq/Adversarial-Attacks-on-Timeseries?color=critical&style=social) | CIKM 2022
| Anomaly Detection | Cora
Citeseer
PubMed
Flickr
ogbn-arxiv | LHML | [Learning Hypersphere for Few-shot Anomaly Detection on Attributed Networks](https://doi.org/10.1145/3511808.3557377) | [Pytorch](https://github.com/Eureka-GQY/LHML)
![Stars](https://img.shields.io/github/stars/Eureka-GQY/LHML?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Eureka-GQY/LHML?color=critical&style=social) | CIKM 2022
| Anomaly Detection | RT
NetSpd | RobustDTW | [Robust Time Series Dissimilarity Measure for Outlier Detection and Periodicity Detection](https://doi.org/10.1145/3511808.3557686) | None | CIKM 2022
| Anomaly Detection | CIFAR-1
CIFAR-10
Caltech 10 | SLA2 | [Self-supervision Meets Adversarial Perturbation: A Novel Framework for Anomaly Detection](https://doi.org/10.1145/3511808.3557697) | [Pytorch](https://github.com/wyzjack/SLA2P)
![Stars](https://img.shields.io/github/stars/wyzjack/SLA2P?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/wyzjack/SLA2P?color=critical&style=social) | CIKM 2022
| Anomaly Detection | SMD | FDRC | [Online false discovery rate control for anomaly detection in time series](https://dl.acm.org/doi/10.1145/3447548.3467075) | Nçone | NeurIPS 2021
| Anomaly Detection | SWaT
WADI
SMD
ASD | InterFusion | [Multivariate Time Series Anomaly Detection and Interpretation using Hierarchical Inter-Metric and Temporal Embedding](https://papers.NeurIPS.cc/paper/2021/hash/def130d0b67eb38b7a8f4e7121ed432c-Abstract.html) | [TF](https://github.com/zhhlee/InterFusion)
![Stars](https://img.shields.io/github/stars/zhhlee/InterFusion?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhhlee/InterFusion?color=critical&style=social) | KDD 2021
| Anomaly Detection | SMD
SWaT
PSM
BKPI | RANSynCoders | [Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization](https://doi.org/10.1145/3447548.3467174) | [TF](https://github.com/eBay/RANSynCoders)
![Stars](https://img.shields.io/github/stars/eBay/RANSynCoders?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/eBay/RANSynCoders?color=critical&style=social) | KDD 2021
| Anomaly Detection | PUMP
WADI
SWaT | NSIBF | [Time Series Anomaly Detection for Cyber-physical Systems via Neural System Identification and Bayesian Filtering](https://doi.org/10.1145/3447548.3467137) | [TF](https://github.com/NSIBF/NSIBF)
![Stars](https://img.shields.io/github/stars/NSIBF/NSIBF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/NSIBF/NSIBF?color=critical&style=social) | KDD 2021
| Anomaly Detection | SWaT
WADI | GDN | [Graph Neural Network-Based Anomaly Detection in Multivariate Time Series](https://ojs.aaai.org/index.php/AAAI/article/view/16523) | [Pytorch](https://github.com/d-ailin/GDN)
![Stars](https://img.shields.io/github/stars/d-ailin/GDN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/d-ailin/GDN?color=critical&style=social) | AAAI 2021
| Anomaly Detection | SMD
SMAP
MSL
SWaT | DAEMON | [DAEMON: Unsupervised Anomaly Detection and Interpretation for Multivariate Time Series](https://ieeexplore.ieee.org/abstract/document/9458835) | [Future](https://github.com/Azerrroth/DAEMON) | ICDE 2021
| Anomaly Detection | KPI
Yahoo | FluxEV | [FluxEV: A Fast and Effective Unsupervised Framework for Time-Series Anomaly Detection](https://doi.org/10.1145/3437963.3441823) | [Py](https://github.com/jlidw/FluxEV) | WSDM 2021
| Anomaly Detection | [DataLink](https://compete.hexagon-ml.com/practice/competition/39/)| Benchmark | [Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress](https://ieeexplore.ieee.org/abstract/document/9537291) | None | TKDE 2021
| Earthquakes Detection | NIED | CrowdQuake | [A Networked System of Low-Cost Sensors for Earthquake Detection via Deep Learning](https://doi.org/10.1145/3394486.3403378) | [TF](https://github.com/xhuang2016/Seismic-Detection)
![Stars](https://img.shields.io/github/stars/xhuang2016/Seismic-Detection?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/xhuang2016/Seismic-Detection?color=critical&style=social) | KDD 2020
| Anomaly Detection | SWaT
WADI
SMD
SMAP
MSL
Orange | USAD | [USAD: UnSupervised Anomaly Detection on Multivariate Time Series](https://doi.org/10.1145/3394486.3403392) | [Pytorch](https://github.com/manigalati/usad)
![Stars](https://img.shields.io/github/stars/manigalati/usad?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/manigalati/usad?color=critical&style=social) | KDD 2020
| Anomaly Detection | NYC | CHAT | [Cross-interaction hierarchical attention networks for urban anomaly prediction](https://dl.acm.org/doi/abs/10.5555/3491440.3492041) | None | IJCAI 2020
| Anomaly Detection | NYC-Bike
NYC-Taxi
Weather
NYC-POI
NYC-Anomaly | DST-MFN | [Deep Spatio-Temporal Multiple Domain Fusion Network for Urban Anomalies Detection](https://doi.org/10.1145/3340531.3411920) | None | CIKM 2020
| Anomaly Detection | SMAP
MSL
TSA | MTAD-GAT | [Multivariate Time-Series Anomaly Detection via Graph Attention Network](https://ieeexplore.ieee.org/abstract/document/9338317) | [TF](https://github.com/mangushev/mtad-gat)
![Stars](https://img.shields.io/github/stars/mangushev/mtad-gat?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/mangushev/mtad-gat?color=critical&style=social) [Pytorch](https://github.com/ML4ITS/mtad-gat-pytorch) | ICDM 2020
| Anomaly Detection | SMAP
MSL
SMD | OmniAnomaly | [Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network](https://doi.org/10.1145/3292500.3330672) | [TF](https://github.com/NetManAIOps/OmniAnomaly)
![Stars](https://img.shields.io/github/stars/NetManAIOps/OmniAnomaly?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/NetManAIOps/OmniAnomaly?color=critical&style=social) | KDD 2019
| Anomaly Detection | GeoLife
TST | IRL-ADU | [Sequential Anomaly Detection using Inverse Reinforcement Learning](https://doi.org/10.1145/3292500.3330932) | None | KDD 2019
| Anomaly Detection | donors
census
fraud
celeba ,etc | DevNet | [Deep Anomaly Detection with Deviation Networks](https://doi.org/10.1145/3292500.3330871) | [Keras](https://github.com/GuansongPang/deviation-network)
![Stars](https://img.shields.io/github/stars/GuansongPang/deviation-network?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/GuansongPang/deviation-network?color=critical&style=social) [Pytorch](https://github.com/Choubo/deviation-network-image) | KDD 2019
| Anomaly Detection | KPI
Yahoo
Microsoft | SR-CNN | [Time-Series Anomaly Detection Service at Microsoft](https://doi.org/10.1145/3292500.3330680) | None | KDD 2019
| Anomaly Detection | power plant | MSCRED | [A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data](https://ojs.aaai.org/index.php/AAAI/article/view/3942) | [TF](https://github.com/7fantasysz/MSCRED)
![Stars](https://img.shields.io/github/stars/7fantasysz/MSCRED?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/7fantasysz/MSCRED?color=critical&style=social) | AAAI 2019
| Anomaly Detection | ECG
Motion | BeatGAN | [BeatGAN: Anomalous Rhythm Detection using Adversarially Generated Time Series](https://www.ijcai.org/Proceedings/2019/0616.pdf) | [Pytorch](https://github.com/hi-bingo/BeatGAN)
![Stars](https://img.shields.io/github/stars/hi-bingo/BeatGAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hi-bingo/BeatGAN?color=critical&style=social) | IJCAI 2019
| Anomaly Detection | NAB
ECG | OED | [Outlier Detection for Time Series with Recurrent Autoencoder Ensembles](https://www.ijcai.org/proceedings/2019/0378.pdf) | [TF](https://github.com/tungk/OED)
![Stars](https://img.shields.io/github/stars/tungk/OED?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tungk/OED?color=critical&style=social) | IJCAI 2019
| Anomaly Detection | KPIs | Buzz | [Unsupervised Anomaly Detection for Intricate KPIs via Adversarial Training of VAE](https://ieeexplore.ieee.org/abstract/document/8737430) | [TF](https://github.com/yantijin/Buzz)
![Stars](https://img.shields.io/github/stars/yantijin/Buzz?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yantijin/Buzz?color=critical&style=social) | INFOCOM 2019
| Anomaly Detection | KDDCUP
Thyroid
Arrhythmia
KDDCUP-Rev | DAGMM | [Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection](https://openreview.net/forum?id=BJJLHbb0-) | [Pytorch](https://github.com/danieltan07/dagmm)
![Stars](https://img.shields.io/github/stars/danieltan07/dagmm?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/danieltan07/dagmm?color=critical&style=social) | ICLR 2018
| Anomaly Detection | SMAP
MSL | telemanom | [Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding](https://doi.org/10.1145/3219819.3219845) | [TF](https://github.com/khundman/telemanom)
![Stars](https://img.shields.io/github/stars/khundman/telemanom?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/khundman/telemanom?color=critical&style=social) | KDD 2018
| Anomaly Detection | AD
AID362
aPascal
BM , etc| CINFO | [Sparse Modeling-Based Sequential Ensemble Learning for Effective Outlier Detection in High-Dimensional Numeric Data](https://ojs.aaai.org/index.php/AAAI/article/view/11692) | [Matlab](https://drive.google.com/file/d/0B_GL5U7rPj1xNzNwTHpHSzZkQXM/view?resourcekey=0-HneFEhC8NUIWDfhmfaOyBQ) | AAAI 2018
| Anomaly Detection | KPIs | Donut | [Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications](https://doi.org/10.1145/3178876.3185996) | [TF](https://github.com/NetManAIOps/donut)
![Stars](https://img.shields.io/github/stars/NetManAIOps/donut?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/NetManAIOps/donut?color=critical&style=social) | WWW 2018
| Anomaly Detection | MAWI | DSPOT | [Anomaly Detection in Streams with Extreme Value Theory](https://doi.org/10.1145/3097983.3098144) | [Python](https://github.com/NetManAIOps/donut)
![Stars](https://img.shields.io/github/stars/NetManAIOps/donut?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/NetManAIOps/donut?color=critical&style=social) | KDD 2017
| Anomaly Detection | Power
Space
Engine
ECG | EncDec-AD | [ LSTM-based encoder-decoder for multi-sensor anomaly detection](https://www.semanticscholar.org/paper/LSTM-based-Encoder-Decoder-for-Multi-sensor-Anomaly-Malhotra-Ramakrishnan/e9672150c4f39ab64876e798a94212a93d1770fe) | [Pytorch](https://github.com/jaeeun49/Anomaly-Detection/blob/main/code_practices/LSTM-based%20Encoder-Decoder%20for%20Multi-sensor%20Anomaly%20Detection.ipynb) | ICML 2016
| Anomaly Detection | MORE | MORE | [https://github.com/ZIYU-DEEP/IJCAI-Paper-List-of-Anomaly-Detection](https://github.com/ZIYU-DEEP/IJCAI-Paper-List-of-Anomaly-Detection) | MORE | IJCAI
| Anomaly Detection | MORE | MORE | [DeepTimeSeriesModel](https://github.com/drzhang3/DeepTimeSeriesModel) | MORE | MORE
| Anomaly Detection | MORE | MORE | [GuansongPang](https://github.com/GuansongPang/SOTA-Deep-Anomaly-Detection) | MORE | MORE

# [Demand Prediction](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-:| - |
| Paper Nums: 30+ | | | | | |
| Travel
Demand | CDP
SLD | STTD | [Uncertainty Quantification via Spatial-Temporal Tweedie Model for Zero-inflated and Long-tail Travel Demand Prediction](https://dl.acm.org/doi/10.1145/3583780.3614918) | [Pytorch](https://github.com/STTDAnonymous/STTD)
![Stars](https://img.shields.io/github/stars/STTDAnonymous/STTD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/STTDAnonymous/STTD?color=critical&style=social) | CIKM 2023
| Travel
Demand | NYC Bike
NYC Taxi | AGND | [Adaptive Graph Neural Diffusion for Traffic Demand Forecasting](https://dl.acm.org/doi/abs/10.1145/3583780.3615153) | None | CIKM 2023
| Traffic Demand | BJSubway
NYCTaxi | CMOD | [Continuous-Time and Multi-Level Graph Representation Learning for Origin-Destination Demand Prediction](https://doi.org/10.1145/3534678.3539273) | [Pytorch](https://github.com/liangzhehan/CMOD)
![Stars](https://img.shields.io/github/stars/liangzhehan/CMOD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/liangzhehan/CMOD?color=critical&style=social) | KDD 2022
| Job Demand | IT
FIN
CONS | DH-GEM | [Talent Demand-Supply Joint Prediction with Dynamic Heterogeneous Graph Enhanced Meta-Learning](https://doi.org/10.1145/3534678.3539139) | [Pytorch](https://github.com/gzn00417/DH-GEM)
![Stars](https://img.shields.io/github/stars/gzn00417/DH-GEM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/gzn00417/DH-GEM?color=critical&style=social) | KDD 2022
| Supply &
Demand | JONAS-NYC
JONAS-DC
COVID-CHI
COVID-US | EAST-Net | [Event-Aware Multimodal Mobility Nowcasting](https://aaai-2022.virtualchair.net/poster_aaai10914) | [Pytorch](https://github.com/underdoc-wang/EAST-Net)
![Stars](https://img.shields.io/github/stars/underdoc-wang/EAST-Net?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/underdoc-wang/EAST-Net?color=critical&style=social) | AAAI 2022
| Health Demand | Family Van | framework | [Using Public Data to Predict Demand for Mobile Health Clinics](https://aaai-2022.virtualchair.net/poster_emer91) | None | AAAI 2022
| Traffic Demand | BJMetro
NYCTaxi | HMOD | [Dynamic Graph Learning Based on Hierarchical Memory for Origin-Destination Demand Prediction](https://doi.org/10.24963/ijcai.2022/331) | [Pytorch](https://github.com/Rising0321/HMOD)
![Stars](https://img.shields.io/github/stars/Rising0321/HMOD?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Rising0321/HMOD?color=critical&style=social) | IJCAI 2022
| Traffic Demand | Chicago
LosAngeles | STGNN-DJD | [A Data-Driven Spatial-Temporal Graph Neural Network for Docked Bike Prediction](https://ieeexplore.ieee.org/abstract/document/9835338) | [Pytorch](https://github.com/GuanyaoLI/STGNN)
![Stars](https://img.shields.io/github/stars/GuanyaoLI/STGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/GuanyaoLI/STGNN?color=critical&style=social) | ICDE 2022
| OD Demand | Shanghai
Changsha
Beijing | CausalOD | [Causal Learning Empowered OD Prediction for Urban Planning](https://doi.org/10.1145/3511808.3557255) | [Pytorch](https://github.com/tsinghua-fib-lab/SIRI)
![Stars](https://img.shields.io/github/stars/tsinghua-fib-lab/SIRI?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tsinghua-fib-lab/SIRI?color=critical&style=social) | CIKM 2022
| OD Demand | NYC Taxi
Haikou
SZMetro | HSTN | [Origin-Destination Traffic Prediction based on Hybrid Spatio-Temporal Network](https://ieeexplore.ieee.org/document/10027683) | [TF](https://github.com/chentingyang/HSTN)
![Stars](https://img.shields.io/github/stars/chentingyang/HSTN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/chentingyang/HSTN?color=critical&style=social) | ICDM 2022
| Traffic Demand | NYC Bike
NYC Taxi | CCRNN | [Coupled Layer-wise Graph Convolution for Transportation Demand Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/16591) | [Pytorch](https://github.com/Essaim/CGCDemandPrediction)
![Stars](https://img.shields.io/github/stars/Essaim/CGCDemandPrediction?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Essaim/CGCDemandPrediction?color=critical&style=social) | AAAI 2021
| Traffic Demand | BaiduBJ
BaiduSH | Ada-MSTNet | [Community-Aware Multi-Task Transportation Demand Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/16107) | None | AAAI 2021
| Job Demand | Online | TDAN | [Talent Demand Forecasting with Attentive Neural Sequential Model](https://dl.acm.org/doi/abs/10.1145/3447548.3467131) | None | KDD 2021
| Ambulance Demand | Tokyo | EMS-Pred | [Forecasting Ambulance Demand with Profiled Human Mobility via Heterogeneous Multi-Graph Neural Networks](https://ieeexplore.ieee.org/abstract/document/9458623) | [Pytorch](https://github.com/underdoc-wang/EMS-Pred-ICDE-21)
![Stars](https://img.shields.io/github/stars/underdoc-wang/EMS-Pred-ICDE-21?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/underdoc-wang/EMS-Pred-ICDE-21?color=critical&style=social) | ICDE 2021
| Passenger Demand | TaxiNYC | SOUP | [SOUP: A Fleet Management System for Passenger Demand Prediction and Competitive Taxi Supply](https://ieeexplore.ieee.org/abstract/document/9458616) | None | ICDE 2021
| Passenger Demand | DiDiBJ
DiDiSH| Gallat | [Gallat: A Spatiotemporal Graph Attention Network for Passenger Demand Prediction](https://ieeexplore.ieee.org/document/9458919) | None | ICDE 2021
| Traffic Demand
Traffic Flow | Chengdu
Xian| DeepTP | [An Effective Joint Prediction Model for Travel Demands and Traffic Flows](https://ieeexplore.ieee.org/document/9458698) | None | ICDE 2021
| Traffic Demand | DiDiCD
NYCTaxi | DAGNN | [Dynamic Auto-structuring Graph Neural Network-A Joint Learning Framework for Origin-Destination Demand Prediction](https://ieeexplore.ieee.org/abstract/document/9657493) | None | TKDE 2021
| Traffic Demand | TaxiNYC
CitiBikeNYC | MultiAttConvLSTM | [Multi-level attention networks for multi-step citywide passenger demands prediction](https://ieeexplore.ieee.org/abstract/document/8873676/) | None | TKDE 2021
| Market Demand | Juhuasuan
Tiantiantemai | RMLDP | [Relation-aware Meta-learning for E-commerce Market Segment Demand Prediction with Limited Records](https://doi.org/10.1145/3437963.3441750) | None | WSDM 2021
| Metro Demand | MetroBJ2016
MetroBJ2018 | CAS | [Short-term origin-destination demand prediction in urban rail transit systems: A channel-wise attentive split-convolutional neural network method](https://doi.org/10.1016/j.trc.2020.102928) | None | Transportation Research Part C 2021
| Metro Demand | MetroBJ2016
MetroBJ2018 | ST-ED | [Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network](https://doi.org/10.1016/j.trc.2020.102858) | None | Transportation Research Part C 2021
| Traffic Demand | Seattlebike | FairST | [Fairness-Aware Demand Prediction for New Mobility](https://ojs.aaai.org/index.php/AAAI/article/view/5458) | None | AAAI 2020
| Drug Demand | Wikipedia | None | [Predicting Drug Demand with Wikipedia Views: Evidence from Darknet Markets](https://doi.org/10.1145/3366423.3380022) | None | WWW 2020
| Traffic Demand | DiDiBJ
DiDiSH | MPGCN | [Predicting Origin-Destination Flow via Multi-Perspective Graph Convolutional Network](https://ieeexplore.ieee.org/abstract/document/9101359) | [Pytorch](https://github.com/underdoc-wang/MPGCN)
![Stars](https://img.shields.io/github/stars/underdoc-wang/MPGCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/underdoc-wang/MPGCN?color=critical&style=social) | ICDE 2020
| Traffic Demand | NYC
DiDiCD | MPGCN | [Stochastic Origin-Destination Matrix Forecasting Using Dual-Stage Graph Convolutional, Recurrent Neural Networks](https://ieeexplore.ieee.org/abstract/document/9101647/) | [TF](https://github.com/hujilin1229/od-pred)
![Stars](https://img.shields.io/github/stars/hujilin1229/od-pred?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hujilin1229/od-pred?color=critical&style=social) | ICDE 2020
| Traffic Demand | Bengaluru
NYC | GraphLSTM | [Grids Versus Graphs: Partitioning Space for Improved Taxi Demand-Supply Forecasts](https://ieeexplore.ieee.org/abstract/document/9099450/) | [Pytorch](https://github.com/NDavisK/Grids-versus-Graphs)
![Stars](https://img.shields.io/github/stars/NDavisK/Grids-versus-Graphs?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/NDavisK/Grids-versus-Graphs?color=critical&style=social) | TITS 2020
| Traffic Demand | NYCbike
NYCtaxi | CoST-Net | [Co-Prediction of Multiple Transportation Demands Based on Deep Spatio-Temporal Neural Network](https://doi.org/10.1145/3292500.3330887) | None | KDD 2019
| Traffic Demand | UCAR
DiDiCD | GEML | [Origin-Destination Matrix Prediction via Graph Convolution: a New Perspective of Passenger Demand Modeling](https://doi.org/10.1145/3292500.3330877) | [Keras](https://github.com/Zekun-Cai/GEML-Origin-Destination-Matrix-Prediction-via-Graph-Convolution)
![Stars](https://img.shields.io/github/stars/Zekun-Cai/GEML-Origin-Destination-Matrix-Prediction-via-Graph-Convolution?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Zekun-Cai/GEML-Origin-Destination-Matrix-Prediction-via-Graph-Convolution?color=critical&style=social) | KDD 2019
| Traffic Demand | NYCbike
Meso West | CE-LSTM | [Learning Heterogeneous Spatial-Temporal Representation for Bike-Sharing Demand Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/3890) | None | AAAI 2019
| Traffic Demand | Beijing
Shanghai | STMGCN | [Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/4247) | [Pytorch](https://github.com/underdoc-wang/ST-MGCN)
![Stars](https://img.shields.io/github/stars/underdoc-wang/ST-MGCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/underdoc-wang/ST-MGCN?color=critical&style=social) | AAAI 2019
| Traffic Demand | NYC-TOD | CSTN | [Contextualized Spatial–Temporal Network for Taxi Origin-Destination Demand Prediction](https://ieeexplore.ieee.org/abstract/document/8720246/) | [Keras](https://github.com/liulingbo918/CSTN)
![Stars](https://img.shields.io/github/stars/liulingbo918/CSTN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/liulingbo918/CSTN?color=critical&style=social) | TITS 2019
| Traffic Demand | NYCtaxi | MultiConvLSTM | [Deep Multi-Scale Convolutional LSTM Network for Travel Demand and Origin-Destination Predictions](https://ieeexplore.ieee.org/abstract/document/8758916/) | None | TITS 2019
| Traffic Demand | PEMS | t-SNE | [Estimating multi-year origin-destination demand using high-granular multi-source traffic data](https://doi.org/10.1016/j.trc.2018.09.002) | None | Transportation Research Part C 2018

# [Time Series Generation](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-: | - |
| Paper Nums: 6 | | | | | |
| TS Generation | Stock
Energy
MuJoCo | ImagenTime | [Utilizing Image Transforms and Diffusion Models for Generative Modeling of Short and Long Time Series](https://openreview.net/forum?id=2NfBBpbN9x) | [Pytorch](https://github.com/azencot-group/ImagenTime)
![Stars](https://img.shields.io/github/stars/azencot-group/ImagenTime?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/azencot-group/ImagenTime?color=critical&style=social) | NIPS 2024
| TS Generation | AR1
Stock
Energy
Temperature
ECG | FIDE | [FIDE: Frequency-Inflated Conditional Diffusion Model for Extreme-Aware Time Series Generation](https://openreview.net/forum?id=5HQhYiGnYb) | [Pytorch](https://github.com/galib19/FIDE)
![Stars](https://img.shields.io/github/stars/galib19/FIDE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/galib19/FIDE?color=critical&style=social) | NIPS 2024
| TS Generation | Electricity
Traffic
Exchange
M4
UberTLC
Solar
KDDCup
Wikipedia | ANT | [ANT: Adaptive Noise Schedule for Time Series Diffusion Models](https://openreview.net/forum?id=1ojAkTylz4) | [glounts](https://github.com/seunghan96/ANT)
![Stars](https://img.shields.io/github/stars/seunghan96/ANT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/seunghan96/ANT?color=critical&style=social) | NIPS 2024
| TS Generation | Sines
Stocks
ETTh
MuJoCo
Energy
Solar
fMRI | SDformer | [SDformer: Similarity-driven Discrete Transformer For Time Series Generation](https://openreview.net/forum?id=ZKbplMrDzI) | [Pytorch](https://anonymous.4open.science/r/SDformer-main/README.md) | NIPS 2024
| TS Generation | Sines
Stocks
ETTh
MuJoCo
Energy
Solar
fMRI | Diffusion-TS | [Diffusion-TS: Interpretable Diffusion for General Time Series Generation](https://openreview.net/forum?id=4h1apFjO99) | [Pytorch](https://github.com/Y-debug-sys/Diffusion-TS)
![Stars](https://img.shields.io/github/stars/Y-debug-sys/Diffusion-TS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Y-debug-sys/Diffusion-TS?color=critical&style=social) | ICLR 2024
| TS Generation | FRED-MD
NN5 Daily
Temp Rain
Solar Weekly | LS4 | [Deep Latent State Space Models for Time-Series Generation](https://proceedings.mlr.press/v202/zhou23i.html) | [Pytorch](https://github.com/thuwuyinjun/DGM2)
![Stars](https://img.shields.io/github/stars/thuwuyinjun/DGM2?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuwuyinjun/DGM2?color=critical&style=social) | ICML 2023
| TS Generation | He ́non maps
Lorenz
fMRI
EEG| CR-VAE | [Causal Recurrent Variational Autoencoder for Medical Time Series Generation](https://ojs.aaai.org/index.php/AAAI/article/view/26031) | [Pytorch](https://github.com/hongmingli1995/CR-VAE)
![Stars](https://img.shields.io/github/stars/hongmingli1995/CR-VAE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hongmingli1995/CR-VAE?color=critical&style=social) | AAAI 2023
| TS Generation | ETTh1
ETTh2
US Births
ILI| AEC-GAN | [AEC-GAN: Adversarial Error Correction GANs for Auto-Regressive Long Time-Series Generation](https://ojs.aaai.org/index.php/AAAI/article/view/26208) | [Pytorch](https://github.com/hongmingli1995/CR-VAE)
![Stars](https://img.shields.io/github/stars/hongmingli1995/CR-VAE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/hongmingli1995/CR-VAE?color=critical&style=social) | AAAI 2023
| TS Generation | UCR | TimeVQVAE | [Vector Quantized Time Series Generation with a Bidirectional Prior Model](https://proceedings.mlr.press/v206/lee23d.html) | [Pytorch](https://github.com/ML4ITS/TimeVQVAE)
![Stars](https://img.shields.io/github/stars/ML4ITS/TimeVQVAE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/ML4ITS/TimeVQVAE?color=critical&style=social) | AISTATS 2023
| TS Generation | USHCN
KDD-CUP
MIMIC-III| DGM | [Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series](https://ojs.aaai.org/index.php/AAAI/article/view/16145) | [Pytorch](https://github.com/thuwuyinjun/DGM2)
![Stars](https://img.shields.io/github/stars/thuwuyinjun/DGM2?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thuwuyinjun/DGM2?color=critical&style=social) | AAAI 2021

# [Travel Time Estimation](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-: | - |
| Paper Nums:20+ | | | | | |
| Package Delivery
TTE | Cainiao | GMDNet | [GMDNet: A Graph-Based Mixture Density Network for Estimating Packages’ Multimodal Travel Time Distribution](https://ojs.aaai.org/index.php/AAAI/article/view/25578) | [Pytorch](https://github.com/maoxiaowei97/GMDNet)
![Stars](https://img.shields.io/github/stars/maoxiaowei97/GMDNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/maoxiaowei97/GMDNet?color=critical&style=social) | AAAI 2023
| Delivery
Time Estimation | Weihai
Hangzhou | IGT | [Inductive Graph Transformer for Delivery Time Estimation](https://doi.org/10.1145/3539597.3570409) | [Pytorch](https://github.com/enoche/IGT-WSDM23)
![Stars](https://img.shields.io/github/stars/enoche/IGT-WSDM23?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/enoche/IGT-WSDM23?color=critical&style=social) | WSDM 2023
| Delivery
Time Estimation | JD and Amazon | STTD | [Uncertainty Quantification via Spatial-Temporal Tweedie Model for Zero-inflated and Long-tail Travel Demand Prediction](https://dl.acm.org/doi/10.1145/3583780.3615215) | [Pytorch](https://github.com/JD-HST-GT/HST-GT)
![Stars](https://img.shields.io/github/stars/JD-HST-GT/HST-GT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/JD-HST-GT/HST-GT?color=critical&style=social) | CIKM 2023
| TTE | Jinan City
Nanjing City | GBTTE | [GBTTE: Graph Attention Network Based Bus Travel Time Estimation](https://dl.acm.org/doi/10.1145/3583780.3614730) | None | CIKM 2023
| TTE | Beijing
Guangzhou | HierETA | [Interpreting Trajectories from Multiple Views: A Hierarchical Self-Attention Network for Estimating the Time of Arrival](https://doi.org/10.1145/3534678.3539051) | [Pytorch](https://github.com/YuejiaoGong/HierETA)
![Stars](https://img.shields.io/github/stars/YuejiaoGong/HierETA?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/YuejiaoGong/HierETA?color=critical&style=social) | KDD 2022
| TTE | Beijing
Porto | MetaER-TTE | [MetaER-TTE: An Adaptive Meta-learning Model for En Route Travel Time Estimation](https://doi.org/10.24963/ijcai.2022/281) | None | IJCAI 2022
| TTE | Beijing
Shanghai
Tianjin | DuETA | [DuETA: Traffic Congestion Propagation Pattern Modeling via Efficient Graph Learning for ETA Prediction at Baidu Maps](https://doi.org/10.1145/3511808.3557091) | None | CIKM 2022
| TTE | Baidu:
Taiyuan
Huizhou
Hefei| SSML | [SSML: Self-Supervised Meta-Learner for En Route Travel Time Estimation at Baidu Maps](https://dl.acm.org/doi/10.1145/3447548.3467060) | [Paddle](https://github.com/PaddlePaddle/Research/tree/master/ST_DM/KDD2021-SSML) | KDD 2021
| TTE | DiDi:
Shenyang | HetETA | [HetETA: Heterogeneous Information Network Embedding for Estimating Time of Arrival](https://dl.acm.org/doi/10.1145/3394486.3403294) | [TF](https://github.com/didi/heteta)
![Stars](https://img.shields.io/github/stars/didi/heteta?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/didi/heteta?color=critical&style=social) | KDD 2020
| TTE | DiDi:
Beijing
Suzhou
Shenyang | CompactETA | [CompactETA: A Fast Inference System for Travel Time Prediction](https://dl.acm.org/doi/10.1145/3394486.3403386) | None | KDD 2020
| TTE | GTFS | BusTr | [BusTr: Predicting Bus Travel Times from Real-Time Traffic](https://doi.org/10.1145/3394486.3403376) | None | KDD 2020
| TTE | Taiyuan
Hefei
Huizhou
(Baidu) | BusTr | [ConSTGAT: Contextual Spatial-Temporal Graph Attention Network for Travel Time Estimation at Baidu Maps](https://doi.org/10.1145/3394486.3403320) | None | KDD 2020
| TTE | NYC
IST
TKY | DeepJMT | [Context-aware Deep Model for Joint Mobility and Time Prediction](https://doi.org/10.1145/3336191.3371837) | None | WSDM 2020
| TTE | Beijing
Shanghai | TTPNet | [TTPNet: A Neural Network for Travel Time Prediction Based on Tensor Decomposition and Graph Embedding](https://ieeexplore.ieee.org/abstract/document/9261122) | [Pytorch](https://github.com/YibinShen/TTPNet)
![Stars](https://img.shields.io/github/stars/YibinShen/TTPNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/YibinShen/TTPNet?color=critical&style=social) | TKDE 2020
| TTE | DiDiBJ | RNML-ETA | [Road Network Metric Learning for Estimated Time of Arrival](https://ieeexplore.ieee.org/abstract/document/9412145) | None | ICPR 2020
| TTE | Cainiao | DeepETA | [DeepETA: A Spatial-Temporal Sequential Neural Network Model for Estimating Time of Arrival in Package Delivery System](https://ojs.aaai.org/index.php/AAAI/article/view/3856) | None | AAAI 2019
| TTE | Beijing
Shanghai | CTTE | [Aggressive driving saves more time? Multi-task learning for customized travel time estimation](https://www.ijcai.org/Proceedings/2019/0234.pdf) | None | IJCAI 2019
| TTE | Shanghai
Porto | DeepI2T | [Travel time estimation without road networks: an urban morphological layout representation approach](https://www.ijcai.org/proceedings/2019/0245.pdf) | None | IJCAI 2019
| TTE | Porto
Chengdu | DeepIST | [DeepIST: Deep Image-based Spatio-Temporal Network for Travel Time Estimation](https://dl.acm.org/doi/abs/10.1145/3357384.3357870) | [TF](https://github.com/csiesheep/deepist)
![Stars](https://img.shields.io/github/stars/csiesheep/deepist?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/csiesheep/deepist?color=critical&style=social) | CIKM 2019
| TTE | Singapore | AtHy-TNet | [Path Travel Time Estimation using Attribute-related Hybrid Trajectories Network](https://doi.org/10.1145/3357384.3357927) | None | CIKM 2019
| TTE | BT-Traffic
PEMS07
Q-traffic | NASF | [Learning to Effectively Estimate the Travel Time for Fastest Route Recommendation](https://doi.org/10.1145/3357384.3357907) | None | CIKM 2019
| TTE | Chengdu
Beijing | DeepTTE | [When Will You Arrive? Estimating Travel Time Based on Deep Neural Networks](https://jelly007.github.io/deepTTE.pdf) | [Pytorch](https://github.com/UrbComp/DeepTTE)
![Stars](https://img.shields.io/github/stars/UrbComp/DeepTTE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/UrbComp/DeepTTE?color=critical&style=social) | AAAI 2018
| TTE | PORTO
SANFRANCISCO | NoisyOR | [Predicting Vehicular Travel Times by Modeling Heterogeneous Influences Between Arterial Roads](https://ojs.aaai.org/index.php/AAAI/article/view/11858) | None | AAAI 2018
| TTE | MORE | MORE | [github](https://github.com/NickHan-cs/Spatio-Temporal-Data-Mining-Survey/blob/master/Estimated-Time-of-Arrival/Paper.md) | MORE | MORE

# [Traffic Location Prediction](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: |:-: | - |
| Paper Nums:20 | | | | | |
| Location | ETH+UCY
SDD
nuScenes
SportVU | | [You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction](https://openreview.net/forum?id=POxF-LEqnF) | None | ICLR 2022
| Location | Beijing
Porto | MetaPTP | [MetaPTP: An Adaptive Meta-optimized Model for Personalized Spatial Trajectory Prediction](https://doi.org/10.1145/3534678.3539360) | [Kai Zheng](http://zheng-kai.com/) Code-None | KDD 2022
| Location | BaiduApollo
NGSIM | HeGA | [HeGA: Heterogeneous Graph Aggregation Network for Trajectory Prediction in High-Density Traffic](https://doi.org/10.1145/3511808.3557345) | [Pytorch](https://github.com/GCDAN/GCDAN)
![Stars](https://img.shields.io/github/stars/GCDAN/GCDAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/GCDAN/GCDAN?color=critical&style=social) | CIKM 2022
| Location | ETH
Hotel
Univ
Zara1
Zara2 | SGTN | [Social Graph Transformer Networks for Pedestrian Trajectory Prediction in Complex Social Scenarios](https://doi.org/10.1145/3511808.3557455) | [Pytorch](https://github.com/GCDAN/GCDAN)
![Stars](https://img.shields.io/github/stars/GCDAN/GCDAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/GCDAN/GCDAN?color=critical&style=social) | CIKM 2022
| Location | Gowalla
Foursquare
WiFi-Trace | GCDAN | [Predicting Human Mobility via Graph Convolutional Dual-attentive Networks](https://dl.acm.org/doi/10.1145/3488560.3498400) | [Pytorch](https://github.com/GCDAN/GCDAN)
![Stars](https://img.shields.io/github/stars/GCDAN/GCDAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/GCDAN/GCDAN?color=critical&style=social) | WSDM 2022
| Location | MI
SIP | CMT-Net | [CMT-Net: A Mutual Transition Aware Framework for Taxicab Pick-ups and Drop-offs Co-Prediction](https://dl.acm.org/doi/10.1145/3488560.3498394) | None | WSDM 2022
| Location | Gowalla
FS-NYC
FS-TKY | MobTCast | [MobTCast: Leveraging Auxiliary Trajectory Forecasting for Human Mobility Prediction](https://proceedings.neurips.cc/paper/2021/hash/fecf2c550171d3195c879d115440ae45-Abstract.html) | [Author](https://drive.google.com/drive/folders/1xfiaz9cAxKYmNWgOH986JpMVSQbt3_qu?usp=sharing) | NeurIPS 2021
| Location | ETH
Hotel
Univ
Zara1
Zara2 | CARPe | [CARPe Posterum: A Convolutional Approach for Real-Time Pedestrian Path Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/16335) | [Pytorch](https://github.com/TeCSAR-UNCC/CARPe_Posterum)
![Stars](https://img.shields.io/github/stars/TeCSAR-UNCC/CARPe_Posterum?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/TeCSAR-UNCC/CARPe_Posterum?color=critical&style=social) | AAAI 2021
| Location | ETH
Hotel
Univ
Zara1
Zara2 | TPNMS | [Temporal Pyramid Network for Pedestrian Trajectory Prediction with Multi-Supervision](https://ojs.aaai.org/index.php/AAAI/article/view/16299) | [Pytorch](https://github.com/Blessinglrq/TPNMS)
![Stars](https://img.shields.io/github/stars/Blessinglrq/TPNMS?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Blessinglrq/TPNMS?color=critical&style=social) | AAAI 2021
| Location | ETH
Hotel
Univ
Zara1
Zara2 | DMRGCN | [Disentangled Multi-Relational Graph Convolutional Network for Pedestrian Trajectory Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/16174) | [Pytorch](https://github.com/TeCSAR-UNCC/CARPe_Posterum)
![Stars](https://img.shields.io/github/stars/TeCSAR-UNCC/CARPe_Posterum?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/TeCSAR-UNCC/CARPe_Posterum?color=critical&style=social) | AAAI 2021
| Location | Gowalla
Foursquare | BSDA | [Location Predicts You: Location Prediction via Bi-direction Speculation and Dual-level Association](https://www.ijcai.org/proceedings/2021/74) | None | IJCAI 2021
| Location | ETH-UCY
Collisions
NGsim
Charges
NBA | FQA | [Multi-agent Trajectory Prediction with Fuzzy Query Attention](https://proceedings.neurips.cc/paper/2020/hash/fe87435d12ef7642af67d9bc82a8b3cd-Abstract.html) | [Pytorch](https://github.com/nitinkamra1992/FQA)
![Stars](https://img.shields.io/github/stars/nitinkamra1992/FQA?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/nitinkamra1992/FQA?color=critical&style=social) | NeurIPS 2020
| Location | ETH-UCY
Collisions
NGsim
Charges
NBA | ARNN | [An Attentional Recurrent Neural Network for Personalized Next Location Recommendation](https://ojs.aaai.org/index.php/AAAI/article/view/5337) | None | AAAI 2020
| Location | ETH
Hotel
Univ
Zara1
Zara2 | MDNLSTM | [Multimodal Interaction-Aware Trajectory Prediction in Crowded Space](https://ojs.aaai.org/index.php/AAAI/article/view/6874) | None | AAAI 2020
| Location | Atlantic| OMuLeT | [OMuLeT: Online Multi-Lead Time Location Prediction for Hurricane Trajectory Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/5444) | [Matlab](https://github.com/cqwangding/OMuLeT) | AAAI 2020
| Location | Gowalla
Foursquare | Flashback | [OMuLeT: Online Multi-Lead Time Location Prediction for Hurricane Trajectory Forecasting](https://www.ijcai.org/Proceedings/2020/302) | [Pytorch](https://github.com/eXascaleInfolab/Flashback_code)
![Stars](https://img.shields.io/github/stars/eXascaleInfolab/Flashback_code?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/eXascaleInfolab/Flashback_code?color=critical&style=social) | IJCAI 2020
| Location | CrowdCJ
TrashBins
B&B
MYOPIC | MALMCS | [Dynamic Public Resource Allocation Based on Human Mobility Prediction](https://doi.org/10.1145/3380986) | [Python](https://github.com/sjruan/malmcs)
![Stars](https://img.shields.io/github/stars/sjruan/malmcs?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/sjruan/malmcs?color=critical&style=social) | UbiComp 2020
| Location | ETH
Hotel
Univ
Zara1
Zara2 | Social-BiGAT | [Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks](https://proceedings.neurips.cc/paper/2019/hash/d09bf41544a3365a46c9077ebb5e35c3-Abstract.html) | None | NeurIPS 2019
| Location | Foursquare
Gowalla | VANext | [Predicting Human Mobility via Variational Attention](https://doi.org/10.1145/3308558.3313610) | None | WWW 2019
| Location | Flickr
Foursquare
Geolife | CATHI | [Context-aware Variational Trajectory Encoding and Human Mobility Inference](https://doi.org/10.1145/3308558.3313608) | None | WWW 2019
| Location | ETH
Hotel
Univ
Zara1
Zara2 | STGAT | [STGAT: Modeling Spatial-Temporal Interactions for Human Trajectory Prediction](https://openaccess.thecvf.com/content_ICCV_2019/html/Huang_STGAT_Modeling_Spatial-Temporal_Interactions_for_Human_Trajectory_Prediction_ICCV_2019_paper.html) | [Pytorch](https://github.com/huang-xx/STGAT)
![Stars](https://img.shields.io/github/stars/huang-xx/STGAT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/huang-xx/STGAT?color=critical&style=social) | ICCV 2019
| Location | BaiduBJ | HST-LSTM | [HST-LSTM: A Hierarchical Spatial-Temporal Long-Short Term Memory Network for Location Prediction](https://www.ijcai.org/proceedings/2018/324) | [Pytorch](https://github.com/Logan-Lin/ST-LSTM_PyTorch)
![Stars](https://img.shields.io/github/stars/Logan-Lin/ST-LSTM_PyTorch?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Logan-Lin/ST-LSTM_PyTorch?color=critical&style=social) | IJCAI 2018
| Location | Foursquare
MobileAPP
CellularSH | DeepMove | [DeepMove: Predicting Human Mobility with Attentional Recurrent Networks](https://doi.org/10.1145/3178876.3186058) | [Pytorch](https://github.com/vonfeng/DeepMove)
![Stars](https://img.shields.io/github/stars/vonfeng/DeepMove?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/vonfeng/DeepMove?color=critical&style=social) | WWW 2018
| Location | MORE | MORE | [github](https://github.com/xuehaouwa/Awesome-Trajectory-Prediction) | [Hao Xue](https://github.com/xuehaouwa/Awesome-Trajectory-Prediction) | MORE
| Location | MORE | MORE | [https://github.com/Pursueee/Trajectory-Paper-Collation](https://github.com/Pursueee/Trajectory-Paper-Collation) | [Pytorch](https://github.com/Pursueee/Trajectory-Paper-Collation)
![Stars](https://img.shields.io/github/stars/Pursueee/Trajectory-Paper-Collation?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Pursueee/Trajectory-Paper-Collation?color=critical&style=social) | MORE

# [Event Prediction](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-: | - |
| Paper Nums:21 | | | | | |
| Event | ETT
PM2.5
IndD | NsTKA | [Non-stationary Time-aware Kernelized Attention for Temporal Event Prediction](https://doi.org/10.1145/3534678.3539470) | [Future](https://github.com/alipay/nstka-kdd22) | KDD 2022
| Crime Prediction | Chicago Crime
LA Crime
| HAGEN | [HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/20338) | [Pytorch](https://github.com/Rafa-zy/HAGEN)
![Stars](https://img.shields.io/github/stars/Rafa-zy/HAGEN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Rafa-zy/HAGEN?color=critical&style=social) | AAAI 2022
| Event | PEMS | AGWN | [Early Forecast of Traffc Accident Impact Based on a Single-Snapshot Observation (Student Abstract)](https://aaai-2022.virtualchair.net/poster_sa103) | [Pytorch](https://github.com/gm3g11/AGWN)
![Stars](https://img.shields.io/github/stars/gm3g11/AGWN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/gm3g11/AGWN?color=critical&style=social) | AAAI 2022
| Event | SLA-VAE
E-commerce | RETE | [RETE: Retrieval-Enhanced Temporal Event Forecasting on Unified Query Product Evolutionary Graph](https://doi.org/10.1145/3485447.3511974) | [Pytorch](https://github.com/DiMarzioBian/RETE_TheWebConf)
![Stars](https://img.shields.io/github/stars/DiMarzioBian/RETE_TheWebConf?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/DiMarzioBian/RETE_TheWebConf?color=critical&style=social) | WWW 2022
| Event | NYC
Chicago | GSNet | [GSNet: Learning Spatial-Temporal Correlations from Geographical and Semantic Aspects for Traffic Accident Risk Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/16566) | [Pytorch](https://github.com/Echohhhhhh/GSNet)
![Stars](https://img.shields.io/github/stars/Echohhhhhh/GSNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Echohhhhhh/GSNet?color=critical&style=social) | AAAI 2021
| Event | NYCIncidents
CHIIncidents
SFIncidents | STCGNN | [Spatio-Temporal-Categorical Graph Neural Networks for Fine-Grained Multi-Incident Co-Prediction](https://doi.org/10.1145/3459637.3482482) | [Pytorch](https://github.com/underdoc-wang/STC-GNN)
![Stars](https://img.shields.io/github/stars/underdoc-wang/STC-GNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/underdoc-wang/STC-GNN?color=critical&style=social) | CIKM 2021
| Event | Thailand
Egypt
India
Russia
Covid-19 | CMF | [Understanding Event Predictions via Contextualized Multilevel Feature Learning](https://doi.org/10.1145/3459637.3482309) | None | CIKM 2021
| Event Prediction | DJIA30
WebTraffic
NetFlow
ClockErr
AbServe | EvoNet | [Time-Series Event Prediction with Evolutionary State Graph](https://doi.org/10.1145/3437963.3441827) | [tf](https://github.com/VachelHU/EvoNet) | WSDM 2021
| Event | NYCIncidents
CHIIncidents
SFIncidents | PreView | [Dynamic Heterogeneous Graph Neural Network for Real-time Event Prediction](https://doi.org/10.1145/3394486.3403373) | None | KDD 2020
| Event Prediction | MIMIC-III | DSSM | [Deep State-Space Generative Model For Correlated Time-to-Event Predictions](https://doi.org/10.1145/3394486.3403206) | None | KDD 2020
| Event | Beijing
Suzhou
Shenyang | RiskOracle | [RiskOracle: A Minute-Level Citywide Traffic Accident Forecasting Framework](https://ojs.aaai.org//index.php/AAAI/article/view/5480) | [TF](https://github.com/zzyy0929/AAAI2020-RiskOracle/)
![Stars](https://img.shields.io/github/stars/zzyy0929/AAAI2020-RiskOracle/?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zzyy0929/AAAI2020-RiskOracle/?color=critical&style=social) | AAAI 2020
| Event | NYCIncidents
CHIIncidents | STrans | [Hierarchically Structured Transformer Networks for Fine-Grained Spatial Event Forecasting](https://doi.org/10.1145/3366423.3380296) | None | WWW 2020
| Event | FewEvent | DMB-PN | [Meta-Learning with Dynamic-Memory-Based Prototypical Network for Few-Shot Event Detection](https://dl.acm.org/doi/10.1145/3336191.3371796) | [dataset](https://github.com/231sm/Low_Resource_KBP) | WSDM 2020
| Event | NYC
SIP | RiskSeq | [Foresee Urban Sparse Traffic Accidents: A Spatiotemporal Multi-Granularity Perspective](https://ieeexplore.ieee.org/document/9242313) | None| TKDE 2020
| Event | MemeTracker
Weibo | LANTERN | [Learning Latent Process from High-Dimensional Event Sequences via Efficient Sampling](https://proceedings.neurips.cc/paper/2019/hash/a29d1598024f9e87beab4b98411d48ce-Abstract.html) | [Pytorch](https://github.com/zhangzx-sjtu/LANTERN-NeurIPS-2019)
![Stars](https://img.shields.io/github/stars/zhangzx-sjtu/LANTERN-NeurIPS-2019?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhangzx-sjtu/LANTERN-NeurIPS-2019?color=critical&style=social) | NeurIPS 2019
| Event | Graph
Stack
SmartHome
CarIndicators | WGP-LN,
FD-Dir | [Uncertainty on Asynchronous Time Event Prediction](https://proceedings.neurips.cc/paper/2019/hash/78efce208a5242729d222e7e6e3e565e-Abstract.html) | [TF](https://github.com/sharpenb/Uncertainty-Event-Prediction)
![Stars](https://img.shields.io/github/stars/sharpenb/Uncertainty-Event-Prediction?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/sharpenb/Uncertainty-Event-Prediction?color=critical&style=social) | NeurIPS 2019
| Event | Thailand
Egypt
India
Russia | DynamicGCN | [Learning Dynamic Context Graphs for Predicting Social Events](https://doi.org/10.1145/3292500.3330919) | [Pytorch](https://github.com/amy-deng/DynamicGCN)
![Stars](https://img.shields.io/github/stars/amy-deng/DynamicGCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/amy-deng/DynamicGCN?color=critical&style=social) | KDD 2019
| Event | NYCCollision
ChicagoCrime
NYCTaxi | DMPP | [Deep Mixture Point Processes: Spatio-temporal Event Prediction with Rich Contextual Information](https://dl.acm.org/doi/10.1145/3292500.3330937) | None | KDD 2019
| Event | Civil
Air Quality | SIMDA | [Incomplete Label Multi-Task Deep Learning for Spatio-Temporal Event Subtype Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/4245) | None | AAAI 2019
| Crime Prediction | NYC Crime
NYC Anomaly
Chicago Crime | MiST | [MiST: A Multiview and Multimodal Spatial-Temporal Learning Framework for Citywide Abnormal Event Forecasting](https://doi.org/10.1145/3308558.3313730) | None | WWW 2019
| Event | NYCAccident
NYCEvent | DFN | [Deep Dynamic Fusion Network for Traffic Accident Forecasting](https://doi.org/10.1145/3357384.3357829) | None | CIKM 2019
| Event | | Hetero-ConvLSTM | [Hetero-ConvLSTM: A Deep Learning Approach to Traffic Accident Prediction on Heterogeneous Spatio-Temporal Data](https://ieeexplore.ieee.org/document/9242313) | None| KDD 2018

# [Stock Prediction](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-: | - |
| Paper Nums:30+ | | | | | |
| Stock Price
Prediction | NASDAQ
NYSE
S&P500 | StockMixer | [StockMixer: A Simple Yet Strong MLP-Based Architecture for Stock Price Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/28681) | [Pytorch](https://github.com/SJTU-Quant/StockMixer)
![Stars](https://img.shields.io/github/stars/SJTU-Quant/StockMixer?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SJTU-Quant/StockMixer?color=critical&style=social) | AAAI 2024
| Stock Price
Prediction | CSI 300
CSI 800 | MASTER | [MASTER: Market-Guided Stock Transformer for Stock Price Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/27767) | [Pytorch](https://github.com/SJTU-Quant/MASTER)
![Stars](https://img.shields.io/github/stars/SJTU-Quant/MASTER?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SJTU-Quant/MASTER?color=critical&style=social) | AAAI 2024
| Stock Movement
Prediction | Qin
MAEC | ECHO-GL | [ECHO-GL: Earnings Calls-Driven Heterogeneous Graph Learning for Stock Movement Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/29305) | [Pytorch](https://github.com/pupu0302/ECHOGL)
![Stars](https://img.shields.io/github/stars/pupu0302/ECHOGL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/pupu0302/ECHOGL?color=critical&style=social) | AAAI 2024
| Stock Trend
Prediction | CSI 300
CSI 500 | DoubleAdapt | [DoubleAdapt: A Meta-learning Approach to Incremental Learning for Stock Trend Forecasting](https://doi.org/10.1145/3580305.3599315) | [Pytorch](https://github.com/SJTU-Quant/DoubleAdapt)
![Stars](https://img.shields.io/github/stars/SJTU-Quant/DoubleAdapt?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SJTU-Quant/DoubleAdapt?color=critical&style=social) | KDD 2023
| Stock Movement
Prediction | ACL18
DJIA | PEN | [PEN: Prediction-Explanation Network to Forecast Stock Price Movement with Better Explainability](https://ojs.aaai.org/index.php/AAAI/article/view/25648) | [TF](https://github.com/Shuqi-li/PEN)
![Stars](https://img.shields.io/github/stars/Shuqi-li/PEN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Shuqi-li/PEN?color=critical&style=social) | AAAI 2023
| Stock
Prediction | NASDAQ
NYSE
CSI | RT-GCN | [Relational Temporal Graph Convolutional Networks for Ranking-Based Stock Prediction](https://ieeexplore.ieee.org/document/10184655) | [Pytorch](https://github.com/zhengzetao/RTGCN)
![Stars](https://img.shields.io/github/stars/zhengzetao/RTGCNt?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/zhengzetao/RTGCN?color=critical&style=social) | ICDE 2023
| Stock Movement
Prediction | S&P 500 | ESTIMATE | [Efficient Integration of Multi-Order Dynamics and Internal Dynamics in Stock Movement Prediction](https://doi.org/10.1145/3539597.3570427) | [Pytorch](https://github.com/thanhtrunghuynh93/estimate)
![Stars](https://img.shields.io/github/stars/thanhtrunghuynh93/estimate?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/thanhtrunghuynh93/estimate?color=critical&style=social) | WSDM 2023
| Stock Price
Prediction | ACL18 | D-va | [Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction](https://dl.acm.org/doi/10.1145/3583780.3614844) | [Gluonts](https://github.com/koa-fin/dva)
![Stars](https://img.shields.io/github/stars/koa-fin/dva?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/koa-fin/dva?color=critical&style=social) | CIKM 2023
| Stock Price
Prediction | CSI 300
CSI 500
CSI 800 | CISP | [Follow the Will of the Market: A Context-Informed Drift-Aware Method for Stock Prediction](https://dl.acm.org/doi/10.1145/3583780.3614886) | None | CIKM 2023
| Stock Movement
Prediction | Calls | NumHTML | [NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task Financial Forecasting](https://aaai-2022.virtualchair.net/poster_aaai4799) | [Future,Author](https://github.com/YangLinyi) | AAAI 2022
| Stock Prediction | NASDAQ
NYSE
TSE | ALSP-TF | [Adaptive Long-Short Pattern Transformer for Stock Investment Selection](https://doi.org/10.24963/ijcai.2022/551) | None | IJCAI 2022
| Stock Prediction | S&P 500
Ashare&HK | HISN | [Heterogeneous Interactive Snapshot Network for Review-Enhanced Stock Profiling and Recommendation](https://doi.org/10.24963/ijcai.2022/550) | None | IJCAI 2022
| Stock
Prediction | S&P500
CSI300
Twitter | THGNN | [Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction](https://doi.org/10.1145/3511808.3557089) | None | CIKM 2022
| Stock
Prediction | CSI800 | PASN | [Pattern Adaptive Specialist Network for Learning Trading Patterns in Stock Market](https://doi.org/10.1145/3511808.3557665) | None | CIKM 2022
| Stock Movement
Prediction | NASDAQ
Bitcoin | KHIT | [Kernel-based Hybrid Interpretable Transformer for High-frequency Stock Movement Prediction](https://ieeexplore.ieee.org/document/10027785) | None | ICDM 2022
| Stock Movement
Prediction | CSI800 | TRA | [Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport](https://doi.org/10.1145/3447548.3467358) | [Pytorch](https://github.com/microsoft/qlib/tree/main/examples/benchmarks/TRA)
![Stars](https://img.shields.io/github/stars/microsoft/qlib/tree/main/examples/benchmarks/TRA?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/microsoft/qlib/tree/main/examples/benchmarks/TRA?color=critical&style=social) | KDD 2021
| Stock Movement
Prediction | ACL18
KDD17
NDX100
CSI300
NI225
FTSE100 | DTML | [Accurate Multivariate Stock Movement Prediction via Data-Axis Transformer with Multi-Level Contexts](https://doi.org/10.1145/3447548.3467297) | None| KDD 2021
| Stock
Prediction | Self-defined | AD-GAT | [Modeling the Momentum Spillover Effect for Stock Prediction via Attribute-Driven Graph Attention Networks](https://ojs.aaai.org/index.php/AAAI/article/view/16077) | [Pytorch](https://github.com/RuichengFIC/ADGAT)
![Stars](https://img.shields.io/github/stars/RuichengFIC/ADGAT?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/RuichengFIC/ADGAT?color=critical&style=social) | AAAI 2021
| Stock Selection | NASDAQ
NYSE
TSE| STHAN-SR | [Stock Selection via Spatiotemporal Hypergraph Attention Network: A Learning to Rank Approach](https://ojs.aaai.org/index.php/AAAI/article/view/16127) | None | AAAI 2021
| Stock Movement
Prediction | TPX500 | CGM | [Long-term, Short-term and Sudden Event: Trading Volume Movement Prediction with Graph-based Multi-view Modeling](https://www.ijcai.org/proceedings/2021/0518.pdf) | [Pytorch](https://github.com/lancopku/CGM)
![Stars](https://img.shields.io/github/stars/lancopku/CGM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/lancopku/CGM?color=critical&style=social) | IJCAI 2021
| Stock Trend
Prediction | CSI300
SPX
TOPIX-100 | HATR | [Hierarchical Adaptive Temporal-Relational Modeling for Stock Trend Prediction](https://www.ijcai.org/proceedings/2021/0508.pdf) | None | IJCAI 2021
| Stock Movement
Prediction | NASDAQ
NYSE
TSE
China & HK | HyperStockGAT | [Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport](https://doi.org/10.1145/3442381.3450095) | None| WWW 2021
| Stock Trend
Prediction | CSI300
CSI500 | REST | [REST: Relational Event-driven Stock Trend Forecasting](https://doi.org/10.1145/3442381.3450032) | None | WWW 2021
| Stock Trend
Prediction | CSI300
CSI800
NASDAQ100| CMLF | [Stock Trend Prediction with Multi-granularity Data: A Contrastive Learning Approach with Adaptive Fusion](https://doi.org/10.1145/3459637.3482483) | [Pytorch](https://github.com/CMLF-git-dev/CMLF)
![Stars](https://img.shields.io/github/stars/CMLF-git-dev/CMLF?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/CMLF-git-dev/CMLF?color=critical&style=social) | CIKM 2021
| Stock Movement
Prediction | Self-defined | MFN | [Incorporating Expert-Based Investment Opinion Signals in Stock Prediction: A Deep Learning Framework](https://ojs.aaai.org/index.php/AAAI/article/view/5445) | None | AAAI 2020
| Stock Movement
Prediction | TPX500
TPX100 | LSTM-RGCN | [Modeling the Stock Relation with Graph Network for Overnight Stock Movement Prediction](https://www.ijcai.org/proceedings/2020/0626.pdf) | [Pytorch](https://github.com/liweitj47/overnight-stock-movement-prediction)
![Stars](https://img.shields.io/github/stars/liweitj47/overnight-stock-movement-prediction?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/liweitj47/overnight-stock-movement-prediction?color=critical&style=social) | IJCAI 2020
| Stock Movement
Prediction | NASDAQ
ChinaAShare | HMG-TF | [Hierarchical Multi-Scale Gaussian Transformer for Stock Movement Prediction](https://www.ijcai.org/proceedings/2020/0640.pdf) | None | IJCAI 2020
| Stock Trend
Prediction | FI-2010
CSI-2016 | MTDNN | [Multi-scale Two-way Deep Neural Network for Stock Trend Prediction](https://www.ijcai.org/proceedings/2020/0628.pdf) | [Future](https://github.com/marscrazy/MTDNN) | IJCAI 2020
| Stock Price
Forecasting | Self-defined | Dandelion | [Domain adaptive multi-modality neural attention network for financial forecasting](https://doi.org/10.1145/3366423.3380288) | [Sklearn](https://github.com/Leo02016/Dandelion) | WWW 2020
| Stock Volatility
Forecasting | Calls | HTML | [Hierarchical Transformer-based Multi-task Learning for Volatility Prediction](https://doi.org/10.1145/3366423.3380128) | [Pytorch](https://github.com/YangLinyi/HTML-Hierarchical-Transformer-based-Multi-task-Learning-for-Volatility-Prediction)
![Stars](https://img.shields.io/github/stars/YangLinyi/HTML-Hierarchical-Transformer-based-Multi-task-Learning-for-Volatility-Prediction?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/YangLinyi/HTML-Hierarchical-Transformer-based-Multi-task-Learning-for-Volatility-Prediction?color=critical&style=social) | WWW 2020
| Quantitative
Investments | Self-defined | KGEEF | [Knowledge Graph-based Event Embedding Framework for Financial Quantitative Investments](https://doi.org/10.1145/3397271.3401427) | None | SIGIR 2020
| Stock Price
Prediction | TAQ | GARCH-LSTM | [Price Forecast with High-Frequency Finance Data: An Autoregressive Recurrent Neural Network Model with Technical Indicators](https://doi.org/10.1145/3340531.3412738) | None | CIKM 2020
| Stock Movement
Prediction | HATS | STHGCN | [Spatiotemporal hypergraph convolution network for stock movement forecasting](https://ieeexplore.ieee.org/abstract/document/9338303) | [Pytorch](https://github.com/midas-research/sthgcn-icdm)
![Stars](https://img.shields.io/github/stars/midas-research/sthgcn-icdm?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/midas-research/sthgcn-icdm?color=critical&style=social) | ICDM 2020
| Stock Market
Prediction | Nikkei | GNNs | [Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis](https://arxiv.org/abs/1909.10660) | None | NeurIPSw 2019
| Stock Trend
Prediction | ChineseStock | IMTR | [Investment Behaviors Can Tell What Inside: Exploring Stock Intrinsic Properties for Stock Trend Prediction](https://doi.org/10.1145/3292500.3330663) | None| KDD 2019
| Stock Movement
Prediction | CSI200
CSI300
CSI500 | RNN-MRFs | [Multi-task Recurrent Neural Networks and Higher-order Markov Random Fields for Stock Price Movement Prediction: Multi-task RNN and Higer-order MRFs for Stock Price Classification](https://doi.org/10.1145/3292500.3330983) | None | KDD 2019
| Stock Movement
Prediction | Self-defined | TTIO | [Individualized Indicator for All: Stock-wise Technical Indicator Optimization with Stock Embedding](https://doi.org/10.1145/3292500.3330833) | None | KDD 2019
| Stock Movement
Prediction | ACL18
KDD17
NDX100
CSI300
NI225
FTSE100| Adv-ALSTM | [Enhancing stock movement prediction with adversarial training](https://www.ijcai.org/proceedings/2019/0810.pdf) | [TF](https://github.com/fulifeng/Adv-ALSTM)
![Stars](https://img.shields.io/github/stars/fulifeng/Adv-ALSTM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/fulifeng/Adv-ALSTM?color=critical&style=social) | IJCAI 2019
| Stock Prediction | NASDAQ
NYSE | RSR | [Temporal Relational Ranking for Stock Prediction](https://doi.org/10.1145/3292500.3330833) | [TF](https://github.com/fulifeng/Temporal_Relational_Stock_Ranking)
![Stars](https://img.shields.io/github/stars/fulifeng/Temporal_Relational_Stock_Ranking?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/fulifeng/Temporal_Relational_Stock_Ranking?color=critical&style=social) | TOIS 2019
| Stock Movement
Prediction | Self-defined | StockNet | [Stock Movement Prediction from Tweets and Historical Prices](https://aclanthology.org/P18-1183) | [TF](https://github.com/yumoxu/stocknet-code)
![Stars](https://img.shields.io/github/stars/yumoxu/stocknet-code?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yumoxu/stocknet-code?color=critical&style=social) | ACL 2018
| Stock Trend
Prediction | Self-defined | HAN | [Listening to Chaotic Whispers: A Deep Learning Framework for News-oriented Stock Trend Prediction](https://doi.org/10.1145/3159652.3159690) | [TF](https://github.com/donghyeonk/han)
![Stars](https://img.shields.io/github/stars/donghyeonk/han?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/donghyeonk/han?color=critical&style=social) | WSDM 2018
| Stock Price
Prediction | Self-defined | SFM | [Stock Price Prediction via Discovering Multi-Frequency Trading Patterns](https://doi.org/10.1145/3097983.3098117) | [Keras](https://github.com/z331565360/State-Frequency-Memory-stock-prediction)
![Stars](https://img.shields.io/github/stars/z331565360/State-Frequency-Memory-stock-prediction?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/z331565360/State-Frequency-Memory-stock-prediction?color=critical&style=social) | KDD 2017
| Stock Movement
Prediction | NASDAQ
NYSE | KGEB-CNN | [Knowledge-Driven Event Embedding for Stock Prediction](https://aclanthology.org/C16-1201) | None | COLING 2016

# [Other Forecasting](#content)
| Task | Data | Model | Paper | Code | Publication |
| :-: | :-: | :-: | :-: | :-: | - |
| Paper Nums:40+ | | | | | |
| Water Temperature
Prediction | Delaware
River Basin | SR-MTL | [Meta-Transfer-Learning for Time Series Data with Extreme Events: An Application to Water Temperature Prediction](https://dl.acm.org/doi/abs/10.1145/3583780.3614966) | None | CIKM 2023
| Telecommunication
Traffic
Forecasting | Milan (MI)
Trentino (TN) | TMLM | [Telecommunication Traffic Forecasting via Multi-task Learning](https://doi.org/10.1145/3539597.3570440) | [Author](https://github.com/gpxlcj) | WSDM 2022
| Bitcoin
Volatility
Forecasting | Twitter | D-TCN | [Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data](https://doi.org/10.1145/3539597.3570387) | [TF](https://github.com/meakbiyik/ask-who-not-what)
![Stars](https://img.shields.io/github/stars/meakbiyik/ask-who-not-what?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/meakbiyik/ask-who-not-what?color=critical&style=social) | WSDM 2022
| Rating
Migration
Prediction | Self | META | [Multi-task Envisioning Transformer-based Autoencoder for Corporate Credit Rating Migration Early Prediction](https://doi.org/10.1145/3534678.3539098) | None | KDD 2022
| COVID-19
Prediction | TokyoCOVID19 | SAB-GNN | [Multiwave COVID-19 Prediction from Social Awareness Using Web Search and Mobility Data](https://doi.org/10.1145/3534678.3539172) | [Pytorch](https://github.com/JiaweiXue/MultiwaveCovidPrediction)
![Stars](https://img.shields.io/github/stars/JiaweiXue/MultiwaveCovidPrediction?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/JiaweiXue/MultiwaveCovidPrediction?color=critical&style=social) | KDD 2022
| Service
Time
Prediction | DowBJ
SubBJ | MetaSTP | [Service Time Prediction for Delivery Tasks via Spatial Meta-Learning](https://doi.org/10.1145/3534678.3539027) | None | KDD 2022
| Physician
Burnout
Prediction | EHR
Burnout | HiPAL | [HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records](https://doi.org/10.1145/3534678.3539056) | [TF](https://github.com/HanyangLiu/HiPAL)
![Stars](https://img.shields.io/github/stars/HanyangLiu/HiPAL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HanyangLiu/HiPAL?color=critical&style=social) | KDD 2022
| Crop Yield Prediction | American Crop | GNN-RNN | [A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction](https://aaai-2022.virtualchair.net/poster_aisi6416) | None | AAAI 2022
| Epidemic Prediction | Globe
US-State
US-County | CausalGNN | [CausalGNN: Causal-based Graph Neural Networks for Spatio-Temporal](https://aaai-2022.virtualchair.net/poster_aisi6475) | Future | AAAI 2022
| Soil Moisture
Forecasting | Spain
USA | DGLR | [Dynamic Structure Learning through Graph Neural Network for Forecasting Soil Moisture in Precision Agriculture](https://doi.org/10.24963/ijcai.2022/720) | [Pytorch](https://github.com/AnoushkaVyas/DGLR)
![Stars](https://img.shields.io/github/stars/AnoushkaVyas/DGLR?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/AnoushkaVyas/DGLR?color=critical&style=social) | IJCAI 2022
| Disease Prediction | Disease
Tumors | PopNet | [PopNet: Real-Time Population-Level Disease Prediction with Data Latency](https://doi.org/10.1145/3485447.3512127) | [Pytorch](https://github.com/v1xerunt/PopNet)
![Stars](https://img.shields.io/github/stars/v1xerunt/PopNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/v1xerunt/PopNet?color=critical&style=social) | WWW 2022
| FakeNews Detection | Snop
PolitiFact | GET | [Evidence-aware Fake News Detection with Graph Neural Networks](https://doi.org/10.1145/3485447.3512122) | [Keras](https://github.com/CRIPAC-DIG/GET)
![Stars](https://img.shields.io/github/stars/CRIPAC-DIG/GET?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/CRIPAC-DIG/GET?color=critical&style=social) | WWW 2022
| Crime Prediction | NYC
Chicago | ST-HSL | [Spatial-Temporal Hypergraph Self-Supervised Learning for Crime Prediction](https://ieeexplore.ieee.org/document/9835423) | [Pytorch](https://github.com/LZH-YS1998/STHSL)
![Stars](https://img.shields.io/github/stars/LZH-YS1998/STHSL?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/LZH-YS1998/STHSL?color=critical&style=social) | ICDE 2022
| Popularity
Prediction | WbTopic
WbRepost
Twitter | HERI-GCN | [Deep Popularity Prediction in Multi-Source Cascade with HERI-GCN](https://ieeexplore.ieee.org/document/9835455) | [Pytorch](https://github.com/Les1ie/HERI-GCN)
![Stars](https://img.shields.io/github/stars/Les1ie/HERI-GCN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Les1ie/HERI-GCN?color=critical&style=social) | ICDE 2022
| Parking Pricing | SFMTA
SDOT | None | [Prediction-based One-shot Dynamic Parking Pricing](https://doi.org/10.1145/3511808.3557421) | None| CIKM 2022
| Future Citation | APS
AMiner | DGNI | [Modeling Dynamic Heterogeneous Graph and Node Importance for Future Citation Prediction](https://doi.org/10.1145/3511808.3557398) | None| CIKM 2022
| Pandemic Forecasting | Large-MG | HiSTGNN | [Hierarchical Spatio-Temporal Graph Neural Networks for Pandemic Forecasting](https://doi.org/10.1145/3511808.3557350) | None| CIKM 2022
| Search Traffic
Forecasting | M5
FGSF
SQTE | STARDOM | [STARDOM: Semantic Aware Deep Hierarchical Forecasting Model for Search Traffic Prediction](https://doi.org/10.1145/3511808.3557102) | None| CIKM 2022
| Crime Prediction | NYC
Chicago | LTFMs | [Locality Aware Temporal FMs for Crime Prediction](https://doi.org/10.1145/3511808.3557657) | None| CIKM 2022
| Energy Markets | Nordpool | None | [A Graph-based Spatiotemporal Model for Energy Markets](https://doi.org/10.1145/3511808.3557530) | None| CIKM 2022
| Denoised Health
Risk Prediction | EHR | MedSkim | [MedSkim: Denoised Health Risk Prediction via Skimming Medical Claims Data](https://ieeexplore.ieee.org/document/10027678) | [Pytorch](https://github.com/SH-Src/MedSkim)
![Stars](https://img.shields.io/github/stars/SH-Src/MedSkim?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/SH-Src/MedSkim?color=critical&style=social) | ICDM 2022
| Demand
Prediction | E-Commerce
M5 | Forchestra | [A Large-Scale Ensemble Learning Framework for Demand Forecasting](https://ieeexplore.ieee.org/document/10027662) | [Pytorch](https://github.com/young-j-park/22-ICDM-Forchestra)
![Stars](https://img.shields.io/github/stars/young-j-park/22-ICDM-Forchestra?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/young-j-park/22-ICDM-Forchestra?color=critical&style=social) | ICDM 2022
| Transfer
Traffic Flow
Prediction | ShanghaiBIKE
NanjingBus
HaikouDiDi | CCMHC | [Exploiting Hierarchical Correlations for Cross-City Cross-Mode Traffic Flow Prediction](https://ieeexplore.ieee.org/document/10027729) | [Pytorch](https://github.com/chenyan89/CCMHC)
![Stars](https://img.shields.io/github/stars/chenyan89/CCMHC?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/chenyan89/CCMHC?color=critical&style=social) | ICDM 2022
| Precipitation
Nowcasting | ERA5
WeatherBench | SCC-ConvLSTM | [Spatiotemporal Contextual Consistency Network for Precipitation Nowcasting](https://ieeexplore.ieee.org/document/10027644) | [Future](https://github.com/EricKing19/SCCN) | ICDM 2022
| Transfer
Traffic Flow
Prediction | Shenzhen
HB
Chengdu
Xian | Mest-GAN | [Mest-GAN: Cross-City Urban Traffic Estimation with Meta Spatial-Temporal Generative Adversarial Networks](https://ieeexplore.ieee.org/document/10027789) | None | ICDM 2022
| Transfer
Human Mobility
Prediction | Houston
Iowa City | STORM-GAN | [STORM-GAN: Spatio-Temporal Meta-GAN for Cross-City Estimation of Human Mobility Responses to COVID-19](https://ieeexplore.ieee.org/document/10027783) | [Pytorch](https://github.com/BaoHan88/STROM-GAN)
![Stars](https://img.shields.io/github/stars/BaoHan88/STROM-GAN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/BaoHan88/STROM-GAN?color=critical&style=social) | ICDM 2022
| Transfer
Traffic Flow
Prediction | Shenzhen
HB
Chengdu
Xian | STrans-GAN | [STrans-GAN: Spatially-Transferable Generative Adversarial Networks for Urban Traffic Estimation](https://ieeexplore.ieee.org/document/10027643) | None | ICDM 2022
| Churn Prediction | Beidian
Epinions | CFChurn | [A Counterfactual Modeling Framework for Churn Prediction](https://doi.org/10.1145/3488560.3498468) | [Pytorch](https://github.com/tsinghua-fib-lab/CFChurn)
![Stars](https://img.shields.io/github/stars/tsinghua-fib-lab/CFChurn?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/tsinghua-fib-lab/CFChurn?color=critical&style=social) | WSDM 2022
| Streaming
Traffic Flow | PEMS03 | TrafficStream | [TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on Graph Neural Networks and Continual Learning](https://www.ijcai.org/proceedings/2021/498/) | [Pytorch](https://github.com/AprLie/TrafficStream)
![Stars](https://img.shields.io/github/stars/AprLie/TrafficStream?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/AprLie/TrafficStream?color=critical&style=social) | IJCAI 2021
| Crime
Prediction | NYC
Chicago | ST-SHN | [Spatial-Temporal Sequential Hypergraph Network for Crime Prediction with Dynamic Multiplex Relation Learning](https://www.ijcai.org/proceedings/2021/0225.pdf) | [TF](https://github.com/akaxlh/ST-SHN)
![Stars](https://img.shields.io/github/stars/akaxlh/ST-SHN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/akaxlh/ST-SHN?color=critical&style=social) | IJCAI 2021
| Purchase Intent Forecasting | JD-e-commerce | CHTR | [Purchase Intent Forecasting with Convolutional Hierarchical Transformer Networks](https://ieeexplore.ieee.org/abstract/document/9458836) | None | ICDE 2021
| Popularity Prediction | Tmall | ATNN | [Adversarial Two-Tower Neural Network for New Item’s Popularity Prediction in E-commerce](https://ieeexplore.ieee.org/document/9458869) | None | ICDE 2021
| Career Trajectory Prediction | Company
Position | TACTP | [Variable Interval Time Sequence Modeling for Career Trajectory Prediction: Deep Collaborative Perspective](https://dl.acm.org/doi/10.1145/3442381.3449959) | None | WWW 2021
| Health Prediction | NASH
AD | UNITE | [UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data](https://doi.org/10.1145/3442381.3450087) | [Pytorch](https://github.com/Chacha-Chen/UNITE)
![Stars](https://img.shields.io/github/stars/Chacha-Chen/UNITE?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Chacha-Chen/UNITE?color=critical&style=social) | WWW 2021
| COVID-19 Forecasting | JHUCSSE | HierST | [HierST: A Unified Hierarchical Spatial-temporal Framework for COVID-19 Trend Forecasting](https://doi.org/10.1145/3459637.3481927) | [Pytorch](https://github.com/dolphin-zs/HierST)
![Stars](https://img.shields.io/github/stars/dolphin-zs/HierST?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/dolphin-zs/HierST?color=critical&style=social) | CIKM 2021
| Failure Prediction | Water Pipe
Sewer Pipe | FP | [Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series](https://doi.org/10.1145/3459637.3481918) | None | CIKM 2021
| Publication Prediction | CSJ
CSC | VPALG | [VPALG: Paper-publication Prediction with Graph Neural Networks](https://doi.org/10.1145/3459637.3482490) | None | CIKM 2021
| Water Quality Prediction | | PDE-DGN | [Partial Differential Equation Driven Dynamic Graph Networks for Predicting Stream Water Temperature](https://ieeexplore.ieee.org/abstract/document/9679188) | None | ICDM 2021
| Risk Prediction | COPD
HeartFailure
KidneyDiseases | HiTANet | [HiTANet: Hierarchical Time-Aware Attention Networks for Risk Prediction on Electronic Health Records](https://doi.org/10.1145/3394486.3403107) | [Pytorch](https://github.com/HiTANet2020/HiTANet)
![Stars](https://img.shields.io/github/stars/HiTANet2020/HiTANet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HiTANet2020/HiTANet?color=critical&style=social) | KDD 2020
| Sales Prediction | anonymized | CARNN | [Attention based Multi-Modal New Product Sales Time-series Forecasting](https://doi.org/10.1145/3394486.3403362) | [Pytorch](https://github.com/HumaticsLAB/AttentionBasedMultiModalRNN)
![Stars](https://img.shields.io/github/stars/HumaticsLAB/AttentionBasedMultiModalRNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/HumaticsLAB/AttentionBasedMultiModalRNN?color=critical&style=social) | KDD 2020
| Economy Prediction | IRS | AMCN | [Attentional Multi-graph Convolutional Network for Regional Economy Prediction with Open Migration Data](https://doi.org/10.1145/3394486.3403273) | None | KDD 2020
| Food Demand | Ele.me | OFCT | [Order Fulfillment Cycle Time Estimation for On-Demand Food Delivery](https://doi.org/10.1145/3394486.3403307) | None | KDD 2020
| Parking Prediction | Beijing
Shanghai | SHARE | [Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/5471) | [Pytorch](https://github.com/Vvrep/SHARE-parking_availability_prediction-Pytorch)
![Stars](https://img.shields.io/github/stars/Vvrep/SHARE-parking_availability_prediction-Pytorch?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/Vvrep/SHARE-parking_availability_prediction-Pytorch?color=critical&style=social) | AAAI 2020
| Mortality Risk Prediction| MIMIC-III
eICU | DATA-GRU | [DATA-GRU: Dual-Attention Time-Aware Gated Recurrent Unit for Irregular Multivariate Time Series](https://ojs.aaai.org/index.php/AAAI/article/view/5440) | None | AAAI 2020
| Parking Prediction | Ningbo
Changsha | PewLSTM | [PewLSTM: Periodic LSTM with Weather-Aware Gating Mechanism for Parking Behavior Prediction](https://www.ijcai.org/proceedings/2020/610) | [Pytorch](https://github.com/NingxuanFeng/PewLSTM)
![Stars](https://img.shields.io/github/stars/NingxuanFeng/PewLSTM?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/NingxuanFeng/PewLSTM?color=critical&style=social) | IJCAI 2020
| Health Risk Prediction | MIMIC-III
ESRD | StageNet | [StageNet: Stage-Aware Neural Networks for Health Risk Prediction](https://doi.org/10.1145/3366423.3380136) | [Pytorch](https://github.com/v1xerunt/StageNet)
![Stars](https://img.shields.io/github/stars/v1xerunt/StageNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/v1xerunt/StageNet?color=critical&style=social) | WWW 2020
| Micro-video Popularity Prediction | Xigua | MMVED | [A Multimodal Variational Encoder-Decoder Framework for Micro-video Popularity Prediction](https://doi.org/10.1145/3366423.3380004) | [TF](https://github.com/yaochenzhu/MMVED)
![Stars](https://img.shields.io/github/stars/yaochenzhu/MMVED?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/yaochenzhu/MMVED?color=critical&style=social) | WWW 2020
| Drug Demand Prediction | Wikipedia | | [Predicting Drug Demand with Wikipedia Views: Evidence from Darknet Markets](https://doi.org/10.1145/3366423.3380022) | None | WWW 2020
| Epidemic Prediction | IDWR
CDC
US-HHS | Cola-GNN | [Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Prediction](https://doi.org/10.1145/3340531.3411975) | [Pytorch](https://github.com/amy-deng/colagnn)
![Stars](https://img.shields.io/github/stars/amy-deng/colagnn?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/amy-deng/colagnn?color=critical&style=social) | CIKM 2020
| Risk Prediction | HeartFailure
KidneyDisease
Dementia | LSAN | [LSAN: Modeling Long-term Dependencies and Short-term Correlations with Hierarchical Attention for Risk Prediction](https://doi.org/10.1145/3340531.3411864) | [Pytorch](https://github.com/dmmlprojs/lsan)
![Stars](https://img.shields.io/github/stars/dmmlprojs/lsan?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/dmmlprojs/lsan?color=critical&style=social) | CIKM 2020
| Lightning Prediction | Lightning | HSTN | [A Heterogeneous Spatiotemporal Network for Lightning Prediction](https://ieeexplore.ieee.org/abstract/document/9338411) | [Future](https://github.com/gyla1993/HSTN) | ICDM 2020
| Disease Prediction | mPower | RNNODE | [Predicting Parkinson’s Disease with Multimodal Irregularly Collected Longitudinal Smartphone Data](https://ieeexplore.ieee.org/abstract/document/9338417) | None | ICDM 2020
| Turbulence Prediction | Turbulence | T^2-Net | [T^2-Net: A Semi-Supervised Deep Model for Turbulence Forecasting](https://ieeexplore.ieee.org/document/9338418) | None | ICDM 2020
| Popularity Prediction | Sina Weibo | CoupledGNN | [Popularity Prediction on Social Platforms with Coupled Graph Neural Networks](https://doi.org/10.1145/3336191.3371834) | [TF](https://github.com/CaoQi92/CoupledGNN)
![Stars](https://img.shields.io/github/stars/CaoQi92/CoupledGNN?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/CaoQi92/CoupledGNN?color=critical&style=social) | WSDM 2020
| Job Mobility Prediction | Self | HCPNN | [A Hierarchical Career-Path-Aware Neural Network for Job Mobility Prediction](https://doi.org/10.1145/3292500.3330969) | [Python](https://github.com/qingxin-meng/hierarchical-career-path-aware-network)
![Stars](https://img.shields.io/github/stars/qingxin-meng/hierarchical-career-path-aware-network?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/qingxin-meng/hierarchical-career-path-aware-network?color=critical&style=social) | KDD 2019
| Lightning Prediction | Lightning | LightNet | [LightNet: A Dual Spatiotemporal Encoder Network Model for Lightning Prediction](https://doi.org/10.1145/3292500.3330717) | [Keras](https://github.com/gyla1993/LightNet)
![Stars](https://img.shields.io/github/stars/gyla1993/LightNet?color=critical&style=social)
![Forks](https://img.shields.io/github/forks/gyla1993/LightNet?color=critical&style=social) | KDD 2019
| Diagnosis Prediction | MIMICIII | MNN | [MNN: Multimodal Attentional Neural Networks for Diagnosis Prediction](https://www.ijcai.org/Proceedings/2019/823) | None | IJCAI 2019
| Crime Prediction | CrimeCHI
CrimeNYC | NN-CCRF | [Neural Network based Continuous Conditional Random Field for Fine-grained Crime Prediction](https://www.ijcai.org/proceedings/2019/577) | None | IJCAI 2019
| Talent Flow Forecasting | OPNs | ETF | [Large-Scale Talent Flow Forecast with Dynamic Latent Factor Model?](https://doi.org/10.1145/3308558.3313525) | None | WWW 2019
| Sales Prediction | Snack
PG&U | DSF | [A Deep Neural Framework for Sales Forecasting in E-Commerce](https://doi.org/10.1145/3357384.3357883) | None | CIKM 2019
| Load Prediction | Charging Stations | HCFN | [Heterogeneous Components Fusion Network for Load Forecasting of Charging Stations](https://doi.org/10.1145/3357384.3358073) | None | CIKM 2019
| Mortality Risk Prediction | PUB
MIMIC-III | UA-CRNN | [UA-CRNN: Uncertainty-Aware Convolutional Recurrent Neural Network for Mortality Risk Prediction](https://doi.org/10.1145/3357384.3357884) | None | CIKM 2019
| House Price Prediction | NYCHouse
BJHouse | FTD_DenseNet | [An Integrated Model for Urban Subregion House Price Forecasting: A Multi-source Data Perspective](https://ieeexplore.ieee.org/abstract/document/8970751) | None | ICDM 2019
| Water Quality Prediction | | TC | [Predicting Water Quality for the Woronora Delivery Network with Sparse Samples](https://ieeexplore.ieee.org/abstract/document/8970721) | None | ICDM 2019

# [Conferences](#content)

❗ It is highly recommended to utilize [dblp](https://dblp.uni-trier.de/) and [Aminer](https://www.aminer.cn/conf) (in Chinese) to search.

Some more useful websites:
- CCF conference deadlines: https://ccfddl.github.io/
- Conference eye (会议之眼): https://www.conferenceeye.cn/#/layout/home
- Call4Papers: http://123.57.137.208/ccf/ccf-8.jsp
- Conference list: http://www.conferencelist.info/upcoming.html
- PMLR: https://proceedings.mlr.press/ (contains ICML, AISTATS, ACML, UAI, etc)
## Table of Conferences

|Conference | Approximate submission time |
|:--|:--|
| [IJCAI](#IJCAI) | 1.14\~2.15 |
| [ICML](#ICML) | 1.23\~2.24 |
| [KDD](#KDD) | 2.3\~2.17 |
| [CIKM](#CIKM) | 5.15\~5.26 |
| [NeurIPS](#NeurIPS)| 5.18\~6.5 |
| [ICDM](#ICDM) | 6.5\~6.17 |
| [WSDM](#WSDM) | 7.17\~8.16 |
| [AAAI](#AAAI) | 9.5\~9.15 |
| [ICLR](#ICLR) | 9.25\~10.27|
| [WWW](#WWW) | 10.14\~11.5|
| [ICDE-1](#ICDE) | 6.1\~7.21 |
| [ICDE-2](#ICDE) | 10.1\~11.17|
Approximate conference submission times from the most recent 7 years.

## Conference (Journal) CCF Ranks

|Conference (Journal) | CCF Rank |
|:--|:--|
| ICML | A |
| NeurIPS | A |
| ICLR | None but top |
| KDD | A |
| AAAI | A |
| IJCAI | A |
| ICDE | A |
| WWW | A |
| ACL | A |
| INFOCOM | A |
| SIGIR | A |
| VLDB | A |
| UbiComp | A |
| TKDE | A |
| TPAMI | A |
| TOIS | A |
| CIKM | B |
| ICDM | B |
| WSDM | B |
| COLING | B |
| TNNLS | B |
| TITS | B |
| AISTATS | C but top |
| ICPR | C |
| Transportation Research Part C | SCI 1 Top |

Note that: AISTATS is CCF C but is top in computational mathematics (such as for probabilistic problems).

## ICML

> Proceeding Page https://proceedings.mlr.press/
> Homepage https://icml.cc

| Conference | Source | Deadline | Notification |
| ---------- | ---------------------------------------------------------- | ---------- | ---------- |
|ICML 2022|https://icml.cc/Conferences/2022/Schedule| Jan 27, 2022 | |
|ICML 2021| [https://icml.cc/Conferences/2021/Schedule](https://icml.cc/Conferences/2021/Schedule)| | |
| ICML 2020 | [https://icml.cc/Conferences/2020/Schedule](https://icml.cc/Conferences/2020/Schedule) | | |
| ICML 2019 | [https://icml.cc/Conferences/2019/Schedule](https://icml.cc/Conferences/2019/Schedule) | | |

## NeurIPS

[All Links](https://papers.NeurIPS.cc/)

## ICLR

Finding it on openreview:

> Homepage https://openreview.net/group?id=ICLR.cc

| Conference | Source | Deadline | Notification |
| ---------- | ---------------------------------------------------------- | ---------- | ---------- |
|ICLR 2022|https://openreview.net/group?id=ICLR.cc/2022/Conference|Oct 06 '21|Jan 24 '22|
| ICLR 2021 | [https://openreview.net/group?id=ICLR.cc/2021/Conference](https://openreview.net/group?id=ICLR.cc/2021/Conference) | | |
| ICLR 2020 | [https://openreview.net/group?id=ICLR.cc/2020/Conference](https://openreview.net/group?id=ICLR.cc/2020/Conference) | | |

## KDD

> Format : https://www.kdd.org/kdd20xx/accepted-papers

| Conference | Source | Deadline | Notification |
| ---------- | --------------------------------------------------- | ---------- | ---------- |
|KDD-22|| Feb 10th, 2022 | May 19th, 2022 |
|KDD-21| [Link](https://kdd.org/kdd2021/accepted-papers)| | |
| KDD-20 | [Link](https://www.kdd.org/kdd2020/accepted-papers) | | |
| KDD-19 | [Link](https://www.kdd.org/kdd2019/accepted-papers) | | |
| KDD-18 | [Link](https://www.kdd.org/kdd2018/accepted-papers) | | |
| KDD-17 | [Link](https://www.kdd.org/kdd2017/accepted-papers) | | |

## AAAI

| Conference | Source | Deadline | Notification |
| ---------- | ------------------------------------------------------------ | ----------------- | ----------------- |
|AAAI-22|[Link](https://aaai.org/Conferences/AAAI-22/wp-content/uploads/2021/12/AAAI-22_Accepted_Paper_List_Main_Technical_Track.pdf)|September 8, 2021|November 29, 2021|
| AAAI-21 | [Link](https://aaai.org/Conferences/AAAI-21/wp-content/uploads/2020/12/AAAI-21_Accepted-Paper-List.Main_.Technical.Track_.pdf) | | |
| AAAI-20 | [Link](https://aaai.org/Conferences/AAAI-20/wp-content/uploads/2020/01/AAAI-20-Accepted-Paper-List.pdf) | | |
| AAAI-19 | [Link](https://aaai.org/Conferences/AAAI-19/wp-content/uploads/2018/11/AAAI-19_Accepted_Papers.pdf) | | |
| AAAI-18 | [Link](https://aaai.org/Conferences/AAAI-18/wp-content/uploads/2017/12/AAAI-18-Accepted-Paper-List.Web_.pdf) | | |
| AAAI-17 | [Link](https://www.aaai.org/Conferences/AAAI/2017/aaai17accepted-papers.pdf) | | |
| AAAI-16 | [Link](https://www.aaai.org/Conferences/AAAI/2016/aaai16accepted-papers.pdf) | | |
| AAAI-15 | [Link](https://www.aaai.org/Conferences/AAAI/2015/iaai15accepted-papers.pdf) | | |
| AAAI-14 | [Link](https://www.aaai.org/Conferences/AAAI/2014/aaai14accepts.php) | | |
| AAAI-13 | [Link](https://www.aaai.org/Conferences/AAAI/2013/aaai13accepts.php) | | |

## [IJCAI](https://www.ijcai.org/past_proceedings)

| Conference | Source | Deadline | Notification |
| ---------- | ----------------------------------------------------------- | ---------- | ---------- |
|IJCAI-22| [Link](https://www.ijcai.org/proceedings/2022/) | |
|IJCAI-21|[Link](https://ijcai-21.org/program-main-track/)| | |
| IJCAI-20 | [Link](http://static.ijcai.org/2020-accepted_papers.html) | | |
| IJCAI-19 | [Link](https://www.ijcai19.org/accepted-papers.html) | | |
| IJCAI-18 | [Link](https://www.ijcai-18.org/accepted-papers/index.html) | | |
| IJCAI-17 | [Link](https://ijcai-17.org/accepted-papers.html) | | |
| IJCAI-16 | [Link](https://www.ijcai.org/proceedings/2016) | | |
| IJCAI-15 | [Link](https://www.ijcai.org/Proceedings/2015) | | |
| IJCAI-14 | None | | |

## ICDE

IEEE International Conference on Data Engineering

[All Links](https://ieeexplore.ieee.org/xpl/conhome/1000178/all-proceedings)

## WWW

TheWebConf

| Conference | Source | Deadline | Notification |
| ---------- | ---------------------------------------------------------- | ---------- | ---------- |
|WWW-22| [Link](https://www2022.thewebconf.org/accepted-papers/)| 2021-10-21 ... | 2022-01-13 ... |
|WWW-21| [Link](https://www2021.thewebconf.org/program/papers/)| | |
| WWW-20 | [Link](https://dl.acm.org/doi/proceedings/10.1145/3366423) | | |
| WWW-19 | [Link](https://www2019.thewebconf.org/accepted-papers) | | |
| WWW-18 | [Link](https://dl.acm.org/doi/proceedings/10.5555/3178876) | | |
| WWW-17 | [Link](https://dl.acm.org/doi/proceedings/10.1145/3308558) | | |

## CIKM

The Conference on Information and Knowledge Management

[All Links](https://dl.acm.org/conference/cikm)

## ICDM

IEEE International Conference on Data Mining

[All Links]([https://dl.acm.org/conference/cikm](https://ieeexplore.ieee.org/xpl/conhome/1000179/all-proceedings))

## WSDM

ACM Web Search and Data Mining

[All Links](https://dl.acm.org/conference/wsdm)