Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lixx21/llm-datatalks-faq
BUILD LLM using ElasticSearch and Mistral.AI
https://github.com/lixx21/llm-datatalks-faq
elasticsearch llm mistral-ai rag streamlit
Last synced: 3 months ago
JSON representation
BUILD LLM using ElasticSearch and Mistral.AI
- Host: GitHub
- URL: https://github.com/lixx21/llm-datatalks-faq
- Owner: lixx21
- Created: 2024-06-29T03:05:34.000Z (6 months ago)
- Default Branch: master
- Last Pushed: 2024-06-29T04:41:14.000Z (6 months ago)
- Last Synced: 2024-10-11T22:03:22.261Z (3 months ago)
- Topics: elasticsearch, llm, mistral-ai, rag, streamlit
- Language: Python
- Homepage:
- Size: 90.8 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
# About
in this project, we will using [ElasticSearch](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html) and [Mistral.AI](https://mistral.ai/) to build LLM from [DataTalks](https://datatalks.club/) FAQ dataset
# How To Start
1. install the libraries using `pip install -r requirements.txt`
2. on [mistralAI.py](./mistralAI.py), write your own API key for Mistral.AI on `mistral_key` variable
3. run docker for elastic search using this command `docker run -it --rm --name elasticsearch -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e "xpack.security.enabled=false" docker.elastic.co/elasticsearch/elasticsearch:8.4.3`
4. run app using `streamlit run app.py`# App