Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lll-lll-lll-lll/sent-pattern
sent-pattern package categorizes English sentences into one of five basic sentence patterns.
https://github.com/lll-lll-lll-lll/sent-pattern
japanese nlp portfolio python spacy
Last synced: 2 months ago
JSON representation
sent-pattern package categorizes English sentences into one of five basic sentence patterns.
- Host: GitHub
- URL: https://github.com/lll-lll-lll-lll/sent-pattern
- Owner: lll-lll-lll-lll
- License: mit
- Created: 2022-07-22T11:00:25.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2024-05-22T22:28:58.000Z (7 months ago)
- Last Synced: 2024-10-01T05:41:27.965Z (3 months ago)
- Topics: japanese, nlp, portfolio, python, spacy
- Language: Python
- Homepage:
- Size: 169 KB
- Stars: 8
- Watchers: 2
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Sent Pattern
This package categorizes English sentences into one of five basic sentence patterns and identifies the subject, verb, object, and other components. The five basic sentence patterns are based on C. T. Onions's Advanced English Syntax and are frequently used when teaching English in Japan.This is especially a learning package for beginner students of English.
[Influence of His Grammar on English Language Education in Japan ](https://www.intcul.tohoku.ac.jp/ronshu/vol17/12.pdf)
#### [Universe Project](https://spacy.io/universe/project/sent-pattern)## Quick Start
### [fastapi docker Example Code](./examples/docker_poetry_fastapi/)## How To Use
### Installation
```bash
pip install sent-pattern
```### Usage
```py
import spacynlp = spacy.load("en_core_web_lg")
nlp.add_pipe("span_noun")
nlp.add_pipe("sent_pattern")
text = "he gives me something"doc = nlp(text)
pattern = doc._.sentpattern
print(pattern)
# FourthSentencePattern (class)
print(pattern.subject.root)
# he (Token)
print(pattern.verb.root)
# give (Token)
```## Cases without pipeline
If you want to know the sentence pattern without using components, we recommend using method of tags module.
The following three methods must be followed in order.
`create_dep_list`, `create_elements`, `create_sent_pattern`.
execute in order to generate the sentpattern class.
**merit**: can get sentpattern type```py
import spacy
from sent_pattern import tags
nlp = spacy.load("en_core_web_lg")
doc = nlp("he gives me something")
dep_list = tags.create_dep_list(doc)
elements = tags.create_elements(dep_list=dep_list)
p = tags.create_sent_pattern(elements=elements)
pattern = p.pattern_type
# FourthSentencePattern(class)
print(pattern.subject.root.text)
# he (string)
print(pattern.verb.root)
# gives(spacy.Token)
print(dep_list)
# {'ROOT': [gives], 'dative': [me], 'dobj': [something], 'nsubj': [he]}
print(pattern.abbreviation)
# SVO (str)```
how to get prep phrase
```py
nlp = spacy.load("en_core_web_lg")text = "The Eureka client handles all aspects of service instance registration and deregistration"
doc = nlp(text)
dep_list = tags.create_dep_list(doc)
custom = ElementsFactory.make_custom_elements(dep_list, doc=doc, option="prep")
phrase = custom.optionprint(phrase.prep_groups)
# [of service instance registration and deregistration]
```### License
Distributed under the terms of the MIT license, "sent-pattern" is free and open source software