Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/llm-solution/pyllmsol
Python Tool Box for LLM Solutions
https://github.com/llm-solution/pyllmsol
chatbot llamacpp llm llm-training pytorch
Last synced: 27 days ago
JSON representation
Python Tool Box for LLM Solutions
- Host: GitHub
- URL: https://github.com/llm-solution/pyllmsol
- Owner: LLM-Solution
- Created: 2024-10-25T10:06:54.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2024-12-18T16:16:49.000Z (about 1 month ago)
- Last Synced: 2024-12-18T17:26:33.109Z (about 1 month ago)
- Topics: chatbot, llamacpp, llm, llm-training, pytorch
- Language: Python
- Homepage:
- Size: 267 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Python Tool Box for [LLM Solutions](https://llm-solutions.fr)
![Pylint](https://github.com/LLM-Solution/PyLLMSol/actions/workflows/pylint.yml/badge.svg)
![Tests](https://github.com/LLM-Solution/PyLLMSol/actions/workflows/tests.yml/badge.svg)
[![codecov](https://codecov.io/gh/LLM-Solution/PyLLMSol/graph/badge.svg?token=X2MH94CWGZ)](https://codecov.io/gh/LLM-Solution/PyLLMSol)**PyLLMSol** is a Python package designed to simplify the training and inference processes for **large language models (LLMs)**. With dedicated modules for both **training** and **inference**, **PyLLMSol** allows users to create checkpoints, manage prompts, and run models using CLI or API interfaces.
## Table of Contents
- [Installation](#installation)
- [Features](#features)
- [Structure](#structure)
- [Dependencies](#dependencies)
- [Getting Started](#getting-started)
- [License](#license)
- [Author](#author)## Installation
To install **PyLLMSol** and its dependencies, follow these steps:
### 1. Install PyTorch
First, install **PyTorch** with GPU or CPU support by following the instructions on the [PyTorch official website](https://pytorch.org/get-started/locally/). Choose the appropriate command for your operating system, Python version, and hardware.
### 2. Clone the repository
Clone the **PyLLMSol** repository to your local machine:
```bash
git clone https://github.com/LLM-Solution/PyLLMSol.git
cd PyLLMSol
```### 3. Install dependencies
Install the required Python packages listed in the requirements.txt file:
```bash
pip install -r requirements.txt
```### 4. Install PyLLMSol
Install the **PyLLMSol** package using pip:
```bash
pip install .
```## Features
- **Training Management**: Handle datasets, manage training steps, and track losses.
- **Checkpointing**: Save and load checkpoints of models and data at regular intervals.
- **CLI Interface**: Interact with the model via command-line.
- **API Support**: Host the model as a REST API with Flask.
- **Prompt Management**: Handle prompts with truncation and formatting options.## Structure
```plaintext
PyLLMSol/
├── setup.py
├── requirements.txt
├── pyllmsol/
│ └── argparser.py
│ └── _base.py # Basis of training and inference modules
│ ├── data/ # Data module
│ │ └── _base_data.py
│ │ └── chat.py # Chat objects with LLaMa-3.2 format
│ │ └── prompt.py
│ │ └── utils.py
│ └── inference/ # Inference module
│ │ └── _base_api.py
│ │ └── _base_cli.py
│ │ └── cli_instruct.py # CLI with LLaMa-3.2 chat format
│ └── training/ # Training module
│ │ └── checkpoint.py
│ │ └── instruct_trainer.py # Trainer with LLaMa-3.2 chat format
│ │ └── loss.py
│ │ └── trainer.py
│ │ └── utils.py
│ └── tests/
│ └── mock.py
│ └── ... # Some tests of PyLLMSol
└── README.md
```### 1. `training` Module
The `training` module contains tools for managing training workflows and model checkpoints.
- **Trainer**: Manages training loops, handles batch processing, and tracks loss over time.
- **Checkpoint**: Saves and loads model states and data at specific intervals, enabling easy restoration of the training process.
- **DataBrowser**: Supports batch processing and iterating over data with customizable parameters.#### Example Usage
```python
from pyllmsol.training import Trainer, Checkpoint# Initialize training components
trainer = Trainer(llm=my_model, tokenizer=my_tokenizer, dataset=my_data, batch_size=16)
checkpoint = Checkpoint(path='./checkpoints')# Run training with checkpointing
trainer.run(device='cuda', checkpoint=checkpoint)
```### 2. `inference` Module
The `inference` module supports generating responses from the model and includes both CLI and API options.
- **_BaseCommandLineInterface**: Offers an interactive command-line interface for chatting with the model.
- **API**: Provides a REST API using Flask, allowing remote model access.#### CLI Usage
Run the command-line interface to interact with your LLM:
```bash
python -m pyllmsol.inference.cli --model_path path/to/model.gguf
```#### API Usage
To launch the API:
```python
from pyllmsol.inference import API, CommandLineInterfacecli = CommandLineInterface.from_path(model_path='path/to/model', init_prompt='Hello! How can I assist you?')
api = API(cli)
api.run(host="0.0.0.0", port=5000)
```## Dependencies
PyLLMSol requires Python 3.10 or later. Core dependencies include:
- `flask>=3.0.3`
- `llama-cpp-python>=0.3.1`
- `matplotlib>=3.9.2`
- `pandas>=2.2.3`
- `peft>=0.13.2`
- `sentencepiece>=0.2.0`
- `torch>=2.5.0`
- `transformers>=4.45.2`
- `tqdm>=4.66.5`For a full list, see requirements.txt.
## Getting Started
1. Clone the repository and install dependencies.
2. Set up your model files and ensure you have the necessary model weights.
3. Use the CLI or API modules to interact with the model.## License
This project is licensed under the MIT License - see the LICENSE file for details.
## Author
[LLM Solutions](https://llm-solutions.fr) - [Arthur Bernard](https://www.linkedin.com/in/arthur-bernard-789955152/) - [email protected]
___
For further information, refer to the documentation in the source files.