Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lm-sys/llm-decontaminator

Code for the paper "Rethinking Benchmark and Contamination for Language Models with Rephrased Samples"
https://github.com/lm-sys/llm-decontaminator

Last synced: about 5 hours ago
JSON representation

Code for the paper "Rethinking Benchmark and Contamination for Language Models with Rephrased Samples"

Awesome Lists containing this project

README

        

# LLM Decontaminator

| [Paper](https://arxiv.org/pdf/2311.04850.pdf) | [Blog](https://lmsys.org/blog/2023-11-14-llm-decontaminator/) |

img

In this package, you can use LLM decontaminator to quantify a dataset's rephrased samples relative to a benchmark.
Based on the detection results, you can estimate the contamination of rephrased samples in the dataset and remove them from the training set.

## Contents

- [Install](#install)
- [Detect](#detect)
- [Pre-Process](#pre-process)
- [End2End](#end2end)
- [Real-world dataset](#real-world-dataset)
- [Dataset and training code](#dataset-and-training-code)
- [F1 Score](#f1-score)
- [Citation](#citation)

## Install

~~~bash
git clone https://github.com/lm-sys/llm-decontaminator.git
cd llm-decontaminator
conda create -n llm-detect python=3.9 -y
conda activate llm-detect
pip install -r requirement.txt
~~~

## Detect

### Pre-Process
Please process the train set and test set into a jsonl format, with each line containing `{"text": data}`

~~~py
import json
from datasets import load_dataset

# Load dataset
dataset = load_dataset('bigcode/starcoderdata', data_dir="python", split="train", streaming=True)

# Extract up to 500,000 samples
subset_size = 500000
codes = [sample['content'] for _, sample in zip(range(subset_size), dataset)]

# Write to file
with open("starcoderdata.jsonl", "w") as fout:
for code in codes:
fout.write(json.dumps({"text": code}) + "\n")
~~~

### End2End

~~~bash
# export OPENAI_API_KEY=sk-xxx
# run llm-decontaminator
python3 main.py --train_path ./data/train/CodeAlpaca-20k.jsonl \
--test_path ./data/test/HumanEval.jsonl \
--output_path ./data/database/CodeAlpacaDB.jsonl \
--data-type code \
--top_k 1
~~~

## Contamination in Real-world Dataset

| Training Set | Benchmark | Train Set Size | Test Set Size | Rephrased Samples | Percentage (%) |
|-------------------------------|-----------|----------------|---------------|-------------------|----------------|
| The Stack (4G subset) | HumanEval | 500k | 164 | 31 | 18.9 |
| StarCoder-Data (2.4G subset) | HumanEval | 500k | 164 | 26 | 15.9 |
| CodeExercise-Python | HumanEval | 27k | 164 | 26 | 15.9 |
| CodeAlpaca | HumanEval | 20k | 164 | 21 | 12.8 |
| RedPajama-Data-1T (16G subset)| HumanEval | 1625k | 164 | 14 | 8.5 |
| Evol-Instruct-Code | HumanEval | 78.3k | 164 | 13 | 7.9 |
| rossetacode | HumanEval | 4.26k | 164 | 4 | 2.4 |
| MATHInstruct (before Sep 30) | MATH Test | 262k | 5000 | 769 | 15. |
| MATH Train | MATH Test | 7.5k | 5000 | 79 | 1.6 |
| FLAN CoT | MMLU | 184k | 14042 | 76 | 0.5 |
| WizardLM-Evol-Instruct | MMLU | 143k | 14042 | 75 | 0.5 |

## Dataset and Training Code

Reproduce Llama-rephraser with this [document](train/README.md).

## F1 Score

Reproduce paper's Table 5 & 6

~~~bash
# MMLU
python3 f1score/mmlu/f1_emb.py
python3 f1score/mmlu/f1_llm.py

# HumanEval
python3 f1score/humaneval/f1_emb.py
python3 f1score/humaneval/f1_llm.py
~~~

Table 5:

img

Table 6:

img

## Citation

Please cite the following paper if you find the code or datasets helpful.
~~~
@misc{yang2023rethinking,
title={Rethinking Benchmark and Contamination for Language Models with Rephrased Samples},
author={Shuo Yang and Wei-Lin Chiang and Lianmin Zheng and Joseph E. Gonzalez and Ion Stoica},
year={2023},
eprint={2311.04850},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
~~~