Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lolipopshock/detectron2_al
Active Learning for Object Detection using Detectron2
https://github.com/lolipopshock/detectron2_al
Last synced: 2 months ago
JSON representation
Active Learning for Object Detection using Detectron2
- Host: GitHub
- URL: https://github.com/lolipopshock/detectron2_al
- Owner: lolipopshock
- Created: 2020-07-21T05:17:45.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-09-30T19:05:12.000Z (about 4 years ago)
- Last Synced: 2024-04-13T09:11:47.335Z (9 months ago)
- Language: Python
- Size: 233 KB
- Stars: 44
- Watchers: 5
- Forks: 12
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Detectron2 for Active Learning in Object Detection
## Usage
1. Clone the repository with all the submodules:
```bash
git clone --recurse-submodules [email protected]:lolipopshock/Detectron2_AL.git
```
2. Install dependencies:
1. Installing object detection environment with according to your environment
- The tested version of pytorch is 1.4.0 with CUDA 10
- And you **must** install Detectron2 with version 0.1.1. Newer versions has different APIs.
```bash
pip install detectron2==0.1.1 \
-f https://dl.fbaipublicfiles.com/detectron2/wheels/cu100/torch1.4/index.html
```
2. Installing other necessary dependencies:
```bash
pip install -r requirements.txt
```
3. Installing UI components
```bash
cd src/label-studio
pip install -e .
```
3. Setting up the label-studio server and modeling backend
1. Initialize the labeling server (If your image folder is `./data`)
```bash
label-studio init labeling/tk-labeling \
--input-path=./data \
--input-format=image-dir \
--allow-serving-local-files --force \
--label-config=extra/config.xml \
--ml-backends http://localhost:9090
```
And you can start the server via
```
label-studio start labeling/tk-labeling
```
1. Initialize the model backend server
```bash
label-studio-ml init labeling/backend_model --script extra/backend_model.py
```
And similarly, you can start the backend server by
```bash
label-studio-ml start labeling/backend_model
# There's a relative import of the libraries
# So you have to run this command in the project project
# root path to avoid import errors
```
4. Start using active learning for annotation