Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lonePatient/BERT-NER-Pytorch
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)
https://github.com/lonePatient/BERT-NER-Pytorch
adversarial-training albert bert chinese crf focal-loss labelsmoothing ner nlp pytorch softmax span
Last synced: 2 months ago
JSON representation
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)
- Host: GitHub
- URL: https://github.com/lonePatient/BERT-NER-Pytorch
- Owner: lonePatient
- License: mit
- Created: 2019-02-12T05:12:07.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2023-03-11T03:14:55.000Z (almost 2 years ago)
- Last Synced: 2024-11-11T23:02:24.345Z (2 months ago)
- Topics: adversarial-training, albert, bert, chinese, crf, focal-loss, labelsmoothing, ner, nlp, pytorch, softmax, span
- Language: Python
- Homepage:
- Size: 486 KB
- Stars: 2,086
- Watchers: 13
- Forks: 427
- Open Issues: 69
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - lonePatient/BERT-NER-Pytorch
README
## Chinese NER using Bert
BERT for Chinese NER.
**update**:其他一些可以参考,包括Biaffine、GlobalPointer等:[examples](https://github.com/lonePatient/TorchBlocks/tree/master/examples)
### dataset list
1. cner: datasets/cner
2. CLUENER: https://github.com/CLUEbenchmark/CLUENER### model list
1. BERT+Softmax
2. BERT+CRF
3. BERT+Span### requirement
1. 1.1.0 =< PyTorch < 1.5.0
2. cuda=9.0
3. python3.6+### input format
Input format (prefer BIOS tag scheme), with each character its label for one line. Sentences are splited with a null line.
```text
美 B-LOC
国 I-LOC
的 O
华 B-PER
莱 I-PER
士 I-PER我 O
跟 O
他 O
```### run the code
1. Modify the configuration information in `run_ner_xxx.py` or `run_ner_xxx.sh` .
2. `sh scripts/run_ner_xxx.sh`**note**: file structure of the model
```text
├── prev_trained_model
| └── bert_base
| | └── pytorch_model.bin
| | └── config.json
| | └── vocab.txt
| | └── ......
```### CLUENER result
The overall performance of BERT on **dev**:
| | Accuracy (entity) | Recall (entity) | F1 score (entity) |
| ------------ | ------------------ | ------------------ | ------------------ |
| BERT+Softmax | 0.7897 | 0.8031 | 0.7963 |
| BERT+CRF | 0.7977 | 0.8177 | 0.8076 |
| BERT+Span | 0.8132 | 0.8092 | 0.8112 |
| BERT+Span+adv | 0.8267 | 0.8073 | **0.8169** |
| BERT-small(6 layers)+Span+kd | 0.8241 | 0.7839 | 0.8051 |
| BERT+Span+focal_loss | 0.8121 | 0.8008 | 0.8064 |
| BERT+Span+label_smoothing | 0.8235 | 0.7946 | 0.8088 |### ALBERT for CLUENER
The overall performance of ALBERT on **dev**:
| model | version | Accuracy(entity) | Recall(entity) | F1(entity) | Train time/epoch |
| ------ | ------------- | ---------------- | -------------- | ---------- | ---------------- |
| albert | base_google | 0.8014 | 0.6908 | 0.7420 | 0.75x |
| albert | large_google | 0.8024 | 0.7520 | 0.7763 | 2.1x |
| albert | xlarge_google | 0.8286 | 0.7773 | 0.8021 | 6.7x |
| bert | google | 0.8118 | 0.8031 | **0.8074** | ----- |
| albert | base_bright | 0.8068 | 0.7529 | 0.7789 | 0.75x |
| albert | large_bright | 0.8152 | 0.7480 | 0.7802 | 2.2x |
| albert | xlarge_bright | 0.8222 | 0.7692 | 0.7948 | 7.3x |### Cner result
The overall performance of BERT on **dev(test)**:
| | Accuracy (entity) | Recall (entity) | F1 score (entity) |
| ------------ | ------------------ | ------------------ | ------------------ |
| BERT+Softmax | 0.9586(0.9566) | 0.9644(0.9613) | 0.9615(0.9590) |
| BERT+CRF | 0.9562(0.9539) | 0.9671(**0.9644**) | 0.9616(0.9591) |
| BERT+Span | 0.9604(**0.9620**) | 0.9617(0.9632) | 0.9611(**0.9626**) |
| BERT+Span+focal_loss | 0.9516(0.9569) | 0.9644(0.9681) | 0.9580(0.9625) |
| BERT+Span+label_smoothing | 0.9566(0.9568) | 0.9624(0.9656) | 0.9595(0.9612) |