Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lonepatient/bert-ner-pytorch

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)
https://github.com/lonepatient/bert-ner-pytorch

adversarial-training albert bert chinese crf focal-loss labelsmoothing ner nlp pytorch softmax span

Last synced: 3 days ago
JSON representation

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Awesome Lists containing this project

README

        

## Chinese NER using Bert

BERT for Chinese NER.

**update**:其他一些可以参考,包括Biaffine、GlobalPointer等:[examples](https://github.com/lonePatient/TorchBlocks/tree/master/examples)

### dataset list

1. cner: datasets/cner
2. CLUENER: https://github.com/CLUEbenchmark/CLUENER

### model list

1. BERT+Softmax
2. BERT+CRF
3. BERT+Span

### requirement

1. 1.1.0 =< PyTorch < 1.5.0
2. cuda=9.0
3. python3.6+

### input format

Input format (prefer BIOS tag scheme), with each character its label for one line. Sentences are splited with a null line.

```text
美 B-LOC
国 I-LOC
的 O
华 B-PER
莱 I-PER
士 I-PER

我 O
跟 O
他 O
```

### run the code

1. Modify the configuration information in `run_ner_xxx.py` or `run_ner_xxx.sh` .
2. `sh scripts/run_ner_xxx.sh`

**note**: file structure of the model

```text
├── prev_trained_model
| └── bert_base
| | └── pytorch_model.bin
| | └── config.json
| | └── vocab.txt
| | └── ......
```

### CLUENER result

The overall performance of BERT on **dev**:

| | Accuracy (entity) | Recall (entity) | F1 score (entity) |
| ------------ | ------------------ | ------------------ | ------------------ |
| BERT+Softmax | 0.7897 | 0.8031 | 0.7963 |
| BERT+CRF | 0.7977 | 0.8177 | 0.8076 |
| BERT+Span | 0.8132 | 0.8092 | 0.8112 |
| BERT+Span+adv | 0.8267 | 0.8073 | **0.8169** |
| BERT-small(6 layers)+Span+kd | 0.8241 | 0.7839 | 0.8051 |
| BERT+Span+focal_loss | 0.8121 | 0.8008 | 0.8064 |
| BERT+Span+label_smoothing | 0.8235 | 0.7946 | 0.8088 |

### ALBERT for CLUENER

The overall performance of ALBERT on **dev**:

| model | version | Accuracy(entity) | Recall(entity) | F1(entity) | Train time/epoch |
| ------ | ------------- | ---------------- | -------------- | ---------- | ---------------- |
| albert | base_google | 0.8014 | 0.6908 | 0.7420 | 0.75x |
| albert | large_google | 0.8024 | 0.7520 | 0.7763 | 2.1x |
| albert | xlarge_google | 0.8286 | 0.7773 | 0.8021 | 6.7x |
| bert | google | 0.8118 | 0.8031 | **0.8074** | ----- |
| albert | base_bright | 0.8068 | 0.7529 | 0.7789 | 0.75x |
| albert | large_bright | 0.8152 | 0.7480 | 0.7802 | 2.2x |
| albert | xlarge_bright | 0.8222 | 0.7692 | 0.7948 | 7.3x |

### Cner result

The overall performance of BERT on **dev(test)**:

| | Accuracy (entity) | Recall (entity) | F1 score (entity) |
| ------------ | ------------------ | ------------------ | ------------------ |
| BERT+Softmax | 0.9586(0.9566) | 0.9644(0.9613) | 0.9615(0.9590) |
| BERT+CRF | 0.9562(0.9539) | 0.9671(**0.9644**) | 0.9616(0.9591) |
| BERT+Span | 0.9604(**0.9620**) | 0.9617(0.9632) | 0.9611(**0.9626**) |
| BERT+Span+focal_loss | 0.9516(0.9569) | 0.9644(0.9681) | 0.9580(0.9625) |
| BERT+Span+label_smoothing | 0.9566(0.9568) | 0.9624(0.9656) | 0.9595(0.9612) |