https://github.com/louis-finegan/root-finding-algorithms-c
Algorithms for root finding writting in c with, bash shell script that compiles and runs all executable files.
https://github.com/louis-finegan/root-finding-algorithms-c
algorithms bash bash-shell-script bisection-method c-programming-language false-position-method fixed-point-iteration gcc-complier linux-shell newton-raphson numerical-analysis numerical-methods regula-falsi root-finding ubuntu
Last synced: 9 months ago
JSON representation
Algorithms for root finding writting in c with, bash shell script that compiles and runs all executable files.
- Host: GitHub
- URL: https://github.com/louis-finegan/root-finding-algorithms-c
- Owner: Louis-Finegan
- License: mit
- Created: 2023-03-09T15:49:17.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-04-17T20:20:00.000Z (over 2 years ago)
- Last Synced: 2025-02-01T18:36:34.420Z (11 months ago)
- Topics: algorithms, bash, bash-shell-script, bisection-method, c-programming-language, false-position-method, fixed-point-iteration, gcc-complier, linux-shell, newton-raphson, numerical-analysis, numerical-methods, regula-falsi, root-finding, ubuntu
- Language: C
- Homepage: https://github.com/Louis-Finegan/Root-Finding-Algorithms-c
- Size: 18.6 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Root Finding Algorithms in the c programming language
Writen in Linux Ubuntu 20.04.2 LTS.
## Algorithms
1. Bisection Method.
2. False Position (Regula Falsi) Method.
3. Newton-Raphson Method.
4. Fixed Point Method.
## Example Case:
Let $f(x) = 3x^2 - 2x +6$. The value can $x$ such that $f(x)=0$ was calculated by the above algorithms.
## How to use
1. Run the following command in the terminal:
./run.sh
2. Enter in the required quantities in the different fields until the program finshes.
## Results
STARTING PROGRAM
File Names:
1. bisection-method.c
2. false-position-method.c
3. fixed-point-iteration-method.c
4. newton-raphson-method.c
Were Compiled
Running applications:
---STARTING BISECTION METHOD---
Enter an a: -1
Enter a b: 0
Enter the number of iterations: 100
Bisection Method: Solution is -0.290994
initial interval: [-1.000000, 0.000000]
number of iterations is: 100
---ENDING BISECTION METHOD---
---STARTING FALSE POSITION METHOD---
Enter an a: -1
Enter a b: 0
Enter the number of iterations: 100
False Position Method: Solution is -0.290994
initial interval: [-1.000000, 0.000000]
number of iterations is: 100
---ENDING FALSE POSITION METHOD---
---STARTING FIXED POINT ITERATION---
Enter an initial guess: 0
Enter a tolerance: 0.00001
Enter the maximum number of iterations: 1000
Fixed Point Iteration: Solution is -0.290995
---ENDING FIXED POINT ITERATION---
---STARTING NEWTOW RAPHSON METHOD---
Enter an initial guess: 0
Enter the number of iterations: 100
Newton Raphson Method: Solution is -0.290994
number of iterations is: 100
---ENDING NEWTON RAPHSON METHOD---
ENDING PROGRAM