Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lromul/argus-bengali-ai
Kaggle | Solution for Bengali.AI Handwritten Grapheme Classification
https://github.com/lromul/argus-bengali-ai
Last synced: 17 days ago
JSON representation
Kaggle | Solution for Bengali.AI Handwritten Grapheme Classification
- Host: GitHub
- URL: https://github.com/lromul/argus-bengali-ai
- Owner: lRomul
- License: mit
- Created: 2020-01-05T23:05:03.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2022-11-22T07:56:18.000Z (almost 2 years ago)
- Last Synced: 2024-10-07T11:42:36.893Z (about 1 month ago)
- Language: Python
- Homepage: https://www.kaggle.com/c/bengaliai-cv19
- Size: 1.92 MB
- Stars: 3
- Watchers: 2
- Forks: 0
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Bengali.AI Handwritten Grapheme Classification
Source code of solution for [Bengali.AI Handwritten Grapheme Classification](https://www.kaggle.com/c/bengaliai-cv19) competition.
## Solution
Key points:
* Efficientnets
* CutMix, GridMask
* AdamW with cosine annealing
* EMA## Quick setup and start
### Requirements
* Nvidia drivers, CUDA >= 10.1, cuDNN >= 7
* [Docker](https://www.docker.com/), [nvidia-docker](https://github.com/NVIDIA/nvidia-docker)The provided dockerfile is supplied to build image with cuda support and cudnn.
### Preparations
* Clone the repo, build docker image.
```bash
git clone https://github.com/lRomul/argus-bengali-ai.git
cd argus-bengali-ai
make build
```* Download and extract [dataset](https://www.kaggle.com/c/bengaliai-cv19/data) to `data` folder.
### Run
* Run docker container
```bash
make
```* Create a file with folds split
```bash
python make_folds.py
```* Train model
```bash
python train.py --experiment train_001
```* Predict test and make submission
```bash
python kernel_predict.py --experiment train_001
```