Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lromul/argus-bengali-ai

Kaggle | Solution for Bengali.AI Handwritten Grapheme Classification
https://github.com/lromul/argus-bengali-ai

Last synced: 17 days ago
JSON representation

Kaggle | Solution for Bengali.AI Handwritten Grapheme Classification

Awesome Lists containing this project

README

        

# Bengali.AI Handwritten Grapheme Classification

Source code of solution for [Bengali.AI Handwritten Grapheme Classification](https://www.kaggle.com/c/bengaliai-cv19) competition.

## Solution

Key points:
* Efficientnets
* CutMix, GridMask
* AdamW with cosine annealing
* EMA

## Quick setup and start

### Requirements

* Nvidia drivers, CUDA >= 10.1, cuDNN >= 7
* [Docker](https://www.docker.com/), [nvidia-docker](https://github.com/NVIDIA/nvidia-docker)

The provided dockerfile is supplied to build image with cuda support and cudnn.

### Preparations

* Clone the repo, build docker image.
```bash
git clone https://github.com/lRomul/argus-bengali-ai.git
cd argus-bengali-ai
make build
```

* Download and extract [dataset](https://www.kaggle.com/c/bengaliai-cv19/data) to `data` folder.

### Run

* Run docker container
```bash
make
```

* Create a file with folds split
```bash
python make_folds.py
```

* Train model
```bash
python train.py --experiment train_001
```

* Predict test and make submission
```bash
python kernel_predict.py --experiment train_001
```