Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lucadellalib/tensor-field-networks
TensorFlow implementation of Tensor Field Networks. Developed and tested on Ubuntu 18.04 LTS
https://github.com/lucadellalib/tensor-field-networks
classification computer-vision deep-learning point-cloud rotation-equivariance tensor-field-networks tensorflow
Last synced: 3 months ago
JSON representation
TensorFlow implementation of Tensor Field Networks. Developed and tested on Ubuntu 18.04 LTS
- Host: GitHub
- URL: https://github.com/lucadellalib/tensor-field-networks
- Owner: lucadellalib
- License: other
- Created: 2019-08-26T14:42:30.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-04-26T10:39:36.000Z (almost 3 years ago)
- Last Synced: 2024-10-28T06:58:28.710Z (3 months ago)
- Topics: classification, computer-vision, deep-learning, point-cloud, rotation-equivariance, tensor-field-networks, tensorflow
- Language: Python
- Homepage:
- Size: 22.5 KB
- Stars: 3
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Tensor Field Networks for Rotation Equivariance in 3D Point Cloud Classification
TensorFlow implementation of Tensor Field Networks (https://arxiv.org/abs/1802.08219). Extended version of the code in https://github.com/tensorfieldnetworks/tensorfieldnetworks/tree/949e64ac6e069c2f1bfbcbf30d13f696a970488a. **Batch learning is now supported**. The proposed models are tested on ModelNet40 point cloud dataset (https://modelnet.cs.princeton.edu/). Developed and tested on Ubuntu 18.04 LTS.
---------------------------------------------------------------------------------------------------------
## Requirements
* Anaconda Python >= 3.6.4 (see https://www.anaconda.com/distribution/);
* pip (`sudo apt install python3-pip` to install it on Ubuntu 18.04 LTS);
* virtualenv >= 16.6.0 (`python3 -m pip install --user virtualenv` to install it on Ubuntu 18.04 LTS).
---------------------------------------------------------------------------------------------------------
## Installation
### Create a virtual environment
Clone or download the repository and type the following commands in the root folder:
```python3 -m venv env```
```source env/bin/activate```
Now the virtual environment *env* is active (type `deactivate` if you want to deactivate it).
---------------------------------------------------------------------------------------------------------
### Install the dependencies
To install the dependencies, type the following command in the virtual environment:
```pip install -r requirements.txt```
---------------------------------------------------------------------------------------------------------
### Download the dataset
Read *modelnet/data/README.md* for instructions on how to download ModelNet40 dataset.
---------------------------------------------------------------------------------------------------------
## Usage
* `python3 train.py` to train the selected model. `--help` to show the help;
* `python3 evaluate.py` to evaluate the selected model. `--help` to show the help;
* read *modelnet/tools/README.md* for instructions on how to visualize the point clouds.
---------------------------------------------------------------------------------------------------------
## Contact
---------------------------------------------------------------------------------------------------------