Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lucadellalib/tensor-field-networks

TensorFlow implementation of Tensor Field Networks. Developed and tested on Ubuntu 18.04 LTS
https://github.com/lucadellalib/tensor-field-networks

classification computer-vision deep-learning point-cloud rotation-equivariance tensor-field-networks tensorflow

Last synced: 3 months ago
JSON representation

TensorFlow implementation of Tensor Field Networks. Developed and tested on Ubuntu 18.04 LTS

Awesome Lists containing this project

README

        

# Tensor Field Networks for Rotation Equivariance in 3D Point Cloud Classification

TensorFlow implementation of Tensor Field Networks (https://arxiv.org/abs/1802.08219). Extended version of the code in https://github.com/tensorfieldnetworks/tensorfieldnetworks/tree/949e64ac6e069c2f1bfbcbf30d13f696a970488a. **Batch learning is now supported**. The proposed models are tested on ModelNet40 point cloud dataset (https://modelnet.cs.princeton.edu/). Developed and tested on Ubuntu 18.04 LTS.

---------------------------------------------------------------------------------------------------------

## Requirements

* Anaconda Python >= 3.6.4 (see https://www.anaconda.com/distribution/);

* pip (`sudo apt install python3-pip` to install it on Ubuntu 18.04 LTS);

* virtualenv >= 16.6.0 (`python3 -m pip install --user virtualenv` to install it on Ubuntu 18.04 LTS).

---------------------------------------------------------------------------------------------------------

## Installation

### Create a virtual environment

Clone or download the repository and type the following commands in the root folder:

```python3 -m venv env```

```source env/bin/activate```

Now the virtual environment *env* is active (type `deactivate` if you want to deactivate it).

---------------------------------------------------------------------------------------------------------

### Install the dependencies

To install the dependencies, type the following command in the virtual environment:

```pip install -r requirements.txt```

---------------------------------------------------------------------------------------------------------

### Download the dataset

Read *modelnet/data/README.md* for instructions on how to download ModelNet40 dataset.

---------------------------------------------------------------------------------------------------------

## Usage

* `python3 train.py` to train the selected model. `--help` to show the help;

* `python3 evaluate.py` to evaluate the selected model. `--help` to show the help;

* read *modelnet/tools/README.md* for instructions on how to visualize the point clouds.

---------------------------------------------------------------------------------------------------------

## Contact

[email protected]

---------------------------------------------------------------------------------------------------------