An open API service indexing awesome lists of open source software.

https://github.com/lucidfrontier45/optuna-async-helper

A Helper Library to run asynchronous optimization with Optuna
https://github.com/lucidfrontier45/optuna-async-helper

blackbox-optimization hyperparameter-tuning machinelearning optuna

Last synced: 3 months ago
JSON representation

A Helper Library to run asynchronous optimization with Optuna

Awesome Lists containing this project

README

        

# Optuna Async Helper
A Helper Library for Optuna Async Optimization

# Install

```bash
pip install optuna-async-helper
```

# Usage

```python
import tempfile

from optuna_async_helper import (
SearchSpace,
SearchSpec,
optimize,
create_journal_storage,
create_study,
)

def rosenbrock(x: float, y: float, z: float) -> float:
return (z - x) ** 2 + 100 * (y - x**2) ** 2

def test_optimizer():
search_space: SearchSpace = [
SearchSpec(var_name="x", domain_type="float", low=-5, high=5),
SearchSpec(var_name="y", domain_type="float", low=-5, high=5),
]
z = 0.5
initial_params = [
{"x": 0, "y": 0},
{"x": 1.0, "y": 0},
{"x": 0, "y": 1.0},
]

with tempfile.TemporaryDirectory() as tempdir:
storage = create_journal_storage(f"{tempdir}/example.db")
study = create_study(
study_name="rosenbrock",
storage=storage,
)
study = optimize(
study,
objective_func=rosenbrock,
search_space=search_space,
initial_params=initial_params,
n_trials=10,
batch_size=32,
z=z,
)

assert study.best_value < 1.0
assert abs(study.best_params["x"] - z) < 1.0
assert abs(study.best_params["y"] - z) < 1.0
```

For more detail, please check `optimize` and `SearchSpec` definitions.

# Development

The project is managed by [uv](https://docs.astral.sh/uv/)