Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lucidrains/discrete-key-value-bottleneck-pytorch

Implementation of Discrete Key / Value Bottleneck, in Pytorch
https://github.com/lucidrains/discrete-key-value-bottleneck-pytorch

artificial-intelligence deep-learning memory quantization system-2 transfer-learning

Last synced: 5 days ago
JSON representation

Implementation of Discrete Key / Value Bottleneck, in Pytorch

Awesome Lists containing this project

README

        

## Discrete Key / Value Bottleneck - Pytorch

Implementation of Discrete Key / Value Bottleneck, in Pytorch.

## Install

```bash
$ pip install discrete-key-value-bottleneck-pytorch
```

## Usage

```python
import torch
from discrete_key_value_bottleneck_pytorch import DiscreteKeyValueBottleneck

key_value_bottleneck = DiscreteKeyValueBottleneck(
dim = 512, # input dimension
dim_memory = 512, # output dimension - or dimension of each memories for all heads (defaults to same as input)
num_memory_codebooks = 2, # number of memory codebook, embedding is split into 2 pieces of 256, 256, quantized, outputs 256, 256, flattened together to 512
num_memories = 256, # number of memories
decay = 0.9, # the exponential moving average decay, lower means the keys will change faster
)

embeds = torch.randn(1, 1024, 512) # from pretrained encoder

memories = key_value_bottleneck(embeds)

memories.shape # (1, 1024, 512) # (batch, seq, memory / values dimension)

# now you can use the memories for the downstream decoder
```

You can also pass the pretrained encoder to the bottleneck and it will automatically invoke it. Example with `vit-pytorch` library

```bash
$ pip install vit-pytorch
```

Then

```python
import torch

# import vision transformer

from vit_pytorch import SimpleViT
from vit_pytorch.extractor import Extractor

vit = SimpleViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 512,
depth = 6,
heads = 16,
mlp_dim = 2048
)

# train vit, or load pretrained

vit = Extractor(vit, return_embeddings_only = True)

# then

from discrete_key_value_bottleneck_pytorch import DiscreteKeyValueBottleneck

enc_with_bottleneck = DiscreteKeyValueBottleneck(
encoder = vit, # pass the frozen encoder into the bottleneck
dim = 512, # input dimension
num_memories = 256, # number of memories
dim_memory = 2048, # dimension of the output memories
decay = 0.9, # the exponential moving average decay, lower means the keys will change faster
)

images = torch.randn(1, 3, 256, 256) # input to encoder

memories = enc_with_bottleneck(images) # (1, 64, 2048) # (64 patches)
```

## Todo

- [ ] work off multiple encoder's embedding spaces, and allow for shared or separate memory spaces, to aid exploration in this research

## Citations

```bibtex
@inproceedings{Trauble2022DiscreteKB,
title = {Discrete Key-Value Bottleneck},
author = {Frederik Trauble and Anirudh Goyal and Nasim Rahaman and Michael Curtis Mozer and Kenji Kawaguchi and Yoshua Bengio and Bernhard Scholkopf},
year = {2022}
}
```