Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lugq1990/learning_materials
public materials for AI, Bigdata, Cloud etc.
https://github.com/lugq1990/learning_materials
Last synced: about 2 months ago
JSON representation
public materials for AI, Bigdata, Cloud etc.
- Host: GitHub
- URL: https://github.com/lugq1990/learning_materials
- Owner: lugq1990
- Created: 2022-01-18T02:15:16.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2024-08-23T02:02:15.000Z (4 months ago)
- Last Synced: 2024-08-24T02:58:53.325Z (4 months ago)
- Language: Jupyter Notebook
- Size: 26 MB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Learning material
A repo that contains a list of files that contain materials are used to provide useful insights.
Tabular_problem:
[deep_learning_for_tabular_data](https://github.com/lugq1990/learning_materials/tree/main/Tabular_problem/deep_learning_for_tabular_data.md)
pre_sale:
[pre_sale_starter](https://github.com/lugq1990/learning_materials/tree/main/pre_sale/pre_sale_starter.md)
Papers:
[NLP_papers](https://github.com/lugq1990/learning_materials/tree/main/Papers/NLP_papers.md)
[activation_papers](https://github.com/lugq1990/learning_materials/tree/main/Papers/activation_papers.md)
best_materials:
[好用的链接](https://github.com/lugq1990/learning_materials/tree/main/best_materials/好用的链接.md)
python/flask:
[flask](https://github.com/lugq1990/learning_materials/tree/main/python/flask/flask.md)
RPA:
[RPA](https://github.com/lugq1990/learning_materials/tree/main/RPA/RPA.md)
machine_learning:
[imbalanced_data](https://github.com/lugq1990/learning_materials/tree/main/machine_learning/imbalanced_data.md)
machine_learning/optimizer:
[gradient_descent](https://github.com/lugq1990/learning_materials/tree/main/machine_learning/optimizer/gradient_descent.md)
machine_learning/algorithms:
[ALS](https://github.com/lugq1990/learning_materials/tree/main/machine_learning/algorithms/ALS.md)
[xgboost](https://github.com/lugq1990/learning_materials/tree/main/machine_learning/algorithms/xgboost.md)
[gradient_boosting](https://github.com/lugq1990/learning_materials/tree/main/machine_learning/algorithms/gradient_boosting.md)
machine_learning/model_interpreter:
[model_interpreter](https://github.com/lugq1990/learning_materials/tree/main/machine_learning/model_interpreter/model_interpreter.md)
computer_science:
[architecture](https://github.com/lugq1990/learning_materials/tree/main/computer_science/architecture.md)
数据库:
[oracle](https://github.com/lugq1990/learning_materials/tree/main/数据库/oracle.md)
network:
[restful](https://github.com/lugq1990/learning_materials/tree/main/network/restful.md)
artificial_intelligence:
[semi-supervised learning](https://github.com/lugq1990/learning_materials/tree/main/artificial_intelligence/semi-supervised learning.md)
[人工智能平台](https://github.com/lugq1990/learning_materials/tree/main/artificial_intelligence/人工智能平台.md)
[知识图谱](https://github.com/lugq1990/learning_materials/tree/main/artificial_intelligence/知识图谱.md)
[推荐系统](https://github.com/lugq1990/learning_materials/tree/main/artificial_intelligence/推荐系统.md)
PPT_related:
[ppt_samples_web](https://github.com/lugq1990/learning_materials/tree/main/PPT_related/ppt_samples_web.md)
架构:
[架构图](https://github.com/lugq1990/learning_materials/tree/main/架构/架构图.md)
[BA](https://github.com/lugq1990/learning_materials/tree/main/架构/BA.md)
[TAGAF](https://github.com/lugq1990/learning_materials/tree/main/架构/TAGAF.md)
big_data:
[kafka](https://github.com/lugq1990/learning_materials/tree/main/big_data/kafka.md)
[数据湖](https://github.com/lugq1990/learning_materials/tree/main/big_data/数据湖.md)
[Iceberg](https://github.com/lugq1990/learning_materials/tree/main/big_data/Iceberg.md)
[spark](https://github.com/lugq1990/learning_materials/tree/main/big_data/spark.md)
[ES](https://github.com/lugq1990/learning_materials/tree/main/big_data/ES.md)
[区块链](https://github.com/lugq1990/learning_materials/tree/main/big_data/区块链.md)
[redis](https://github.com/lugq1990/learning_materials/tree/main/big_data/redis.md)
[数据迁移](https://github.com/lugq1990/learning_materials/tree/main/big_data/数据迁移.md)
[数据治理](https://github.com/lugq1990/learning_materials/tree/main/big_data/数据治理.md)
[服务架构](https://github.com/lugq1990/learning_materials/tree/main/big_data/服务架构.md)
[flink](https://github.com/lugq1990/learning_materials/tree/main/big_data/flink.md)
[数据库](https://github.com/lugq1990/learning_materials/tree/main/big_data/数据库.md)
[CDH](https://github.com/lugq1990/learning_materials/tree/main/big_data/CDH.md)
[数据中台](https://github.com/lugq1990/learning_materials/tree/main/big_data/数据中台.md)
[数字孪生](https://github.com/lugq1990/learning_materials/tree/main/big_data/数字孪生.md)
deep_learning:
[NLP](https://github.com/lugq1990/learning_materials/tree/main/deep_learning/NLP.md)
[knowledge_dislillation](https://github.com/lugq1990/learning_materials/tree/main/deep_learning/knowledge_dislillation.md)
[BERT](https://github.com/lugq1990/learning_materials/tree/main/deep_learning/BERT.md)
cloud_computing:
[ERP_system_in_cloud](https://github.com/lugq1990/learning_materials/tree/main/cloud_computing/ERP_system_in_cloud.md)
[cloud](https://github.com/lugq1990/learning_materials/tree/main/cloud_computing/cloud.md)
[microservice](https://github.com/lugq1990/learning_materials/tree/main/cloud_computing/microservice.md)
[cloud_compare](https://github.com/lugq1990/learning_materials/tree/main/cloud_computing/cloud_compare.md)
micro_service:
[web_service](https://github.com/lugq1990/learning_materials/tree/main/micro_service/web_service.md)
frameworks:
[dask](https://github.com/lugq1990/learning_materials/tree/main/frameworks/dask.md)
[pytorch](https://github.com/lugq1990/learning_materials/tree/main/frameworks/pytorch.md)
[pyspark](https://github.com/lugq1990/learning_materials/tree/main/frameworks/pyspark.md)
[light_gbm](https://github.com/lugq1990/learning_materials/tree/main/frameworks/light_gbm.md)
[tensorflow](https://github.com/lugq1990/learning_materials/tree/main/frameworks/tensorflow.md)
git:
[git_related](https://github.com/lugq1990/learning_materials/tree/main/git/git_related.md)
project_related/HR:
[staff_attrition](https://github.com/lugq1990/learning_materials/tree/main/project_related/HR/staff_attrition.md)