Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lukasjhan/mcpp

AnthonyCalandra/modern-cpp-features
https://github.com/lukasjhan/mcpp

Last synced: 21 days ago
JSON representation

AnthonyCalandra/modern-cpp-features

Awesome Lists containing this project

README

        

# C++20/17/14/11

## Overview

C++20 includes the following new language features:
- [coroutines](#coroutines)
- [concepts](#concepts)
- [designated initializers](#designated-initializers)
- [template syntax for lambdas](#template-syntax-for-lambdas)
- [range-based for loop with initializer](#range-based-for-loop-with-initializer)
- [\[\[likely\]\] and \[\[unlikely\]\] attributes](#likely-and-unlikely-attributes)
- [deprecate implicit capture of this](#deprecate-implicit-capture-of-this)
- [class types in non-type template parameters](#class-types-in-non-type-template-parameters)
- [constexpr virtual functions](#constexpr-virtual-functions)
- [explicit(bool)](#explicitbool)
- [immediate functions](#immediate-functions)
- [using enum](#using-enum)
- [lambda capture of parameter pack](#lambda-capture-of-parameter-pack)
- [char8_t](#char8_t)
- [constinit](#constinit)

C++20 includes the following new library features:
- [concepts library](#concepts-library)
- [synchronized buffered outputstream](#synchronized-buffered-outputstream)
- [std::span](#stdspan)
- [bit operations](#bit-operations)
- [math constants](#math-constants)
- [std::is_constant_evaluated](#stdis_constant_evaluated)
- [std::make_shared supports arrays](#stdmake_shared-supports-arrays)
- [starts_with and ends_with on strings](#starts_with-and-ends_with-on-strings)
- [check if associative container has element](#check-if-associative-container-has-element)
- [std::bit_cast](#stdbit_cast)
- [std::midpoint](#stdmidpoint)
- [std::to_array](#stdto_array)

C++17 includes the following new language features:
- [template argument deduction for class templates](#template-argument-deduction-for-class-templates)
- [declaring non-type template parameters with auto](#declaring-non-type-template-parameters-with-auto)
- [folding expressions](#folding-expressions)
- [new rules for auto deduction from braced-init-list](#new-rules-for-auto-deduction-from-braced-init-list)
- [constexpr lambda](#constexpr-lambda)
- [lambda capture this by value](#lambda-capture-this-by-value)
- [inline variables](#inline-variables)
- [nested namespaces](#nested-namespaces)
- [structured bindings](#structured-bindings)
- [selection statements with initializer](#selection-statements-with-initializer)
- [constexpr if](#constexpr-if)
- [utf-8 character literals](#utf-8-character-literals)
- [direct-list-initialization of enums](#direct-list-initialization-of-enums)
- [\[\[fallthrough\]\], \[\[nodiscard\]\], \[\[maybe_unused\]\] attributes](#fallthrough-nodiscard-maybe_unused-attributes)
- [\_\_has\_include](#\_\_has\_include)
- [class template argument deduction](#class-template-argument-deduction)

C++17 includes the following new library features:
- [std::variant](#stdvariant)
- [std::optional](#stdoptional)
- [std::any](#stdany)
- [std::string_view](#stdstring_view)
- [std::invoke](#stdinvoke)
- [std::apply](#stdapply)
- [std::filesystem](#stdfilesystem)
- [std::byte](#stdbyte)
- [splicing for maps and sets](#splicing-for-maps-and-sets)
- [parallel algorithms](#parallel-algorithms)
- [std::sample](#stdsample)
- [std::clamp](#stdclamp)
- [std::reduce](#stdreduce)
- [prefix sum algorithms](#prefix-sum-algorithms)
- [gcd and lcm](#gcd-and-lcm)
- [std::not_fn](#stdnot_fn)
- [string conversion to/from numbers](#string-conversion-tofrom-numbers)

C++14 includes the following new language features:
- [binary literals](#binary-literals)
- [generic lambda expressions](#generic-lambda-expressions)
- [lambda capture initializers](#lambda-capture-initializers)
- [return type deduction](#return-type-deduction)
- [decltype(auto)](#decltypeauto)
- [relaxing constraints on constexpr functions](#relaxing-constraints-on-constexpr-functions)
- [variable templates](#variable-templates)
- [\[\[deprecated\]\] attribute](#deprecated-attribute)

C++14 includes the following new library features:
- [user-defined literals for standard library types](#user-defined-literals-for-standard-library-types)
- [compile-time integer sequences](#compile-time-integer-sequences)
- [std::make_unique](#stdmake_unique)

C++11 includes the following new language features:
- [move semantics](#move-semantics)
- [variadic templates](#variadic-templates)
- [rvalue references](#rvalue-references)
- [forwarding references](#forwarding-references)
- [initializer lists](#initializer-lists)
- [static assertions](#static-assertions)
- [auto](#auto)
- [lambda expressions](#lambda-expressions)
- [decltype](#decltype)
- [type aliases](#type-aliases)
- [nullptr](#nullptr)
- [strongly-typed enums](#strongly-typed-enums)
- [attributes](#attributes)
- [constexpr](#constexpr)
- [delegating constructors](#delegating-constructors)
- [user-defined literals](#user-defined-literals)
- [explicit virtual overrides](#explicit-virtual-overrides)
- [final specifier](#final-specifier)
- [default functions](#default-functions)
- [deleted functions](#deleted-functions)
- [range-based for loops](#range-based-for-loops)
- [special member functions for move semantics](#special-member-functions-for-move-semantics)
- [converting constructors](#converting-constructors)
- [explicit conversion functions](#explicit-conversion-functions)
- [inline-namespaces](#inline-namespaces)
- [non-static data member initializers](#non-static-data-member-initializers)
- [right angle brackets](#right-angle-brackets)
- [ref-qualified member functions](#ref-qualified-member-functions)
- [trailing return types](#trailing-return-types)
- [noexcept specifier](#noexcept-specifier)
- [char32_t and char16_t](#char32_t-and-char16_t)
- [raw string literals](#raw-string-literals)

C++11 includes the following new library features:
- [std::move](#stdmove)
- [std::forward](#stdforward)
- [std::thread](#stdthread)
- [std::to_string](#stdto_string)
- [type traits](#type-traits)
- [smart pointers](#smart-pointers)
- [std::chrono](#stdchrono)
- [tuples](#tuples)
- [std::tie](#stdtie)
- [std::array](#stdarray)
- [unordered containers](#unordered-containers)
- [std::make_shared](#stdmake_shared)
- [std::ref](#stdref)
- [memory model](#memory-model)
- [std::async](#stdasync)
- [std::begin/end](#stdbeginend)

## C++20 Language Features

### Coroutines
_Coroutines_ are special functions that can have their execution suspended and resumed. To define a coroutine, the `co_return`, `co_await`, or `co_yield` keywords must be present in the function's body. C++20's coroutines are stackless; unless optimized out by the compiler, their state is allocated on the heap.

An example of a coroutine is a _generator_ function, which yields (i.e. generates) a value at each invocation:
```c++
generator range(int start, int end) {
while (start < end) {
co_yield start;
start++;
}

// Implicit co_return at the end of this function:
// co_return;
}

for (int n : range(0, 10)) {
std::cout << n << std::endl;
}
```
The above `range` generator function generates values starting at `start` until `end` (exclusive), with each iteration step yielding the current value stored in `start`. The generator maintains its state across each invocation of `range` (in this case, the invocation is for each iteration in the for loop). `co_yield` takes the given expression, yields (i.e. returns) its value, and suspends the coroutine at that point. Upon resuming, execution continues after the `co_yield`.

Another example of a coroutine is a _task_, which is an asynchronous computation that is executed when the task is awaited:
```c++
task echo(socket s) {
for (;;) {
auto data = co_await s.async_read();
co_await async_write(s, data);
}

// Implicit co_return at the end of this function:
// co_return;
}
```
In this example, the `co_await` keyword is introduced. This keyword takes an expression and suspends execution if the thing you're awaiting on (in this case, the read or write) is not ready, otherwise you continue execution. (Note that under the hood, `co_yield` uses `co_await`.)

Using a task to lazily evaluate a value:
```c++
task calculate_meaning_of_life() {
co_return 42;
}

auto meaning_of_life = calculate_meaning_of_life();
// ...
co_await meaning_of_life; // == 42
```

**Note:** While these examples illustrate how to use coroutines at a basic level, there is lots more going on when the code is compiled. These examples are not meant to be complete coverage of C++20's coroutines. Since the `generator` and `task` classes are not provided by the standard library yet, I used the cppcoro library to compile these examples.

### Concepts
_Concepts_ are named compile-time predicates which constrain types. They take the following form:
```
template < template-parameter-list >
concept concept-name = constraint-expression;
```
where `constraint-expression` evaluates to a constexpr Boolean. _Constraints_ should model semantic requirements, such as whether a type is a numeric or hashable. A compiler error results if a given type does not satisfy the concept it's bound by (i.e. `constraint-expression` returns `false`). Because constraints are evaluated at compile-time, they can provide more meaningful error messages and runtime safety.
```c++
// `T` is not limited by any constraints.
template
concept always_satisfied = true;
// Limit `T` to integrals.
template
concept integral = std::is_integral_v;
// Limit `T` to both the `integral` constraint and signedness.
template
concept signed_integral = integral && std::is_signed_v;
// Limit `T` to both the `integral` constraint and the negation of the `signed_integral` constraint.
template
concept unsigned_integral = integral && !signed_integral;
```
There are a variety of syntactic forms for enforcing concepts:
```c++
// Forms for function parameters:
// `T` is a constrained type template parameter.
template
void f(T v);

// `T` is a constrained type template parameter.
template
requires my_concept
void f(T v);

// `T` is a constrained type template parameter.
template
void f(T v) requires my_concept;

// `v` is a constrained deduced parameter.
void f(my_concept auto v);

// `v` is a constrained non-type template parameter.
template
void g();

// Forms for auto-deduced variables:
// `foo` is a constrained auto-deduced value.
my_concept auto foo = ...;

// Forms for lambdas:
// `T` is a constrained type template parameter.
auto f = [] (T v) {
// ...
};
// `T` is a constrained type template parameter.
auto f = [] requires my_concept (T v) {
// ...
};
// `T` is a constrained type template parameter.
auto f = [] (T v) requires my_concept {
// ...
};
// `v` is a constrained deduced parameter.
auto f = [](my_concept auto v) {
// ...
};
// `v` is a constrained non-type template parameter.
auto g = [] () {
// ...
};
```
The `requires` keyword is used either to start a `requires` clause or a `requires` expression:
```c++
template
requires my_concept // `requires` clause.
void f(T);

template
concept callable = requires (T f) { f(); }; // `requires` expression.

template
requires requires (T x) { x + x; } // `requires` clause and expression on same line.
T add(T a, T b) {
return a + b;
}
```
Note that the parameter list in a `requires` expression is optional. Each requirement in a `requires` expression are one of the following:

* **Simple requirements** - asserts that the given expression is valid.

```c++
template
concept callable = requires (T f) { f(); };
```
* **Type requirements** - denoted by the `typename` keyword followed by a type name, asserts that the given type name is valid.

```c++
struct foo {
int foo;
};

struct bar {
using value = int;
value data;
};

struct baz {
using value = int;
value data;
};

// Using SFINAE, enable if `T` is a `baz`.
template >>
struct S {};

template
using Ref = T&;

template
concept C = requires {
// Requirements on type `T`:
typename T::value; // A) has an inner member named `value`
typename S; // B) must have a valid class template specialization for `S`
typename Ref; // C) must be a valid alias template substitution
};

template
void g(T a);

g(foo{}); // ERROR: Fails requirement A.
g(bar{}); // ERROR: Fails requirement B.
g(baz{}); // PASS.
```
* **Compound requirements** - an expression in braces followed by a trailing return type or type constraint.

```c++
template
concept C = requires(T x) {
{*x} -> std::convertible_to; // the type of the expression `*x` is convertible to `T::inner`
{x + 1} -> std::same_as; // the expression `x + 1` satisfies `std::same_as`
{x * 1} -> std::convertible_to; // the type of the expression `x * 1` is convertible to `T`
};
```
* **Nested requirements** - denoted by the `requires` keyword, specify additional constraints (such as those on local parameter arguments).

```c++
template
concept C = requires(T x) {
requires std::same_as;
};
```
See also: [concepts library](#concepts-library).

### Designated initializers
C-style designated initializer syntax. Any member fields that are not explicitly listed in the designated initializer list are default-initialized.
```c++
struct A {
int x;
int y;
int z = 123;
};

A a {.x = 1, .z = 2}; // a.x == 1, a.y == 0, a.z == 2
```

### Template syntax for lambdas
Use familiar template syntax in lambda expressions.
```c++
auto f = [](std::vector v) {
// ...
};
```

### Range-based for loop with initializer
This feature simplifies common code patterns, helps keep scopes tight, and offers an elegant solution to a common lifetime problem.
```c++
for (auto v = std::vector{1, 2, 3}; auto& e : v) {
std::cout << e;
}
// prints "123"
```

### \[\[likely\]\] and \[\[unlikely\]\] attributes
Provides a hint to the optimizer that the labelled statement has a high probability of being executed.
```c++
switch (n) {
case 1:
// ...
break;

[[likely]] case 2: // n == 2 is considered to be arbitrarily more
// ... // likely than any other value of n
break;
}
```

If one of the likely/unlikely attributes appears after the right parenthesis of an if-statement,
it indicates that the branch is likely/unlikely to have its substatement (body) executed.
```c++
int random = get_random_number_between_x_and_y(0, 3);
if (random > 0) [[likely]] {
// body of if statement
// ...
}
```

It can also be applied to the substatement (body) of an iteration statement.
```c++
while (unlikely_truthy_condition) [[unlikely]] {
// body of while statement
// ...
}
```

### Deprecate implicit capture of this
Implicitly capturing `this` in a lambda capture using `[=]` is now deprecated; prefer capturing explicitly using `[=, this]` or `[=, *this]`.
```c++
struct int_value {
int n = 0;
auto getter_fn() {
// BAD:
// return [=]() { return n; };

// GOOD:
return [=, *this]() { return n; };
}
};
```

### Class types in non-type template parameters
Classes can now be used in non-type template parameters. Objects passed in as template arguments have the type `const T`, where `T` is the type of the object, and has static storage duration.
```c++
struct foo {
foo() = default;
constexpr foo(int) {}
};

template
auto get_foo() {
return f;
}

get_foo(); // uses implicit constructor
get_foo();
```

### constexpr virtual functions
Virtual functions can now be `constexpr` and evaluated at compile-time. `constexpr` virtual functions can override non-`constexpr` virtual functions and vice-versa.
```c++
struct X1 {
virtual int f() const = 0;
};

struct X2: public X1 {
constexpr virtual int f() const { return 2; }
};

struct X3: public X2 {
virtual int f() const { return 3; }
};

struct X4: public X3 {
constexpr virtual int f() const { return 4; }
};

constexpr X4 x4;
x4.f(); // == 4
```

### explicit(bool)
Conditionally select at compile-time whether a constructor is made explicit or not. `explicit(true)` is the same as specifying `explicit`.
```c++
struct foo {
// Specify non-integral types (strings, floats, etc.) require explicit construction.
template
explicit(!std::is_integral_v) foo(T) {}
};

foo a = 123; // OK
foo b = "123"; // ERROR: explicit constructor is not a candidate (explicit specifier evaluates to true)
foo c {"123"}; // OK
```

### Immediate functions
Similar to `constexpr` functions, but functions with a `consteval` specifier must produce a constant. These are called `immediate functions`.
```c++
consteval int sqr(int n) {
return n * n;
}

constexpr int r = sqr(100); // OK
int x = 100;
int r2 = sqr(x); // ERROR: the value of 'x' is not usable in a constant expression
// OK if `sqr` were a `constexpr` function
```

### using enum
Bring an enum's members into scope to improve readability. Before:
```c++
enum class rgba_color_channel { red, green, blue, alpha };

std::string_view to_string(rgba_color_channel channel) {
switch (channel) {
case rgba_color_channel::red: return "red";
case rgba_color_channel::green: return "green";
case rgba_color_channel::blue: return "blue";
case rgba_color_channel::alpha: return "alpha";
}
}
```
After:
```c++
enum class rgba_color_channel { red, green, blue, alpha };

std::string_view to_string(rgba_color_channel my_channel) {
switch (my_channel) {
using enum rgba_color_channel;
case red: return "red";
case green: return "green";
case blue: return "blue";
case alpha: return "alpha";
}
}
```

### Lambda capture of parameter pack
Capture parameter packs by value:
```c++
template
auto f(Args&&... args){
// BY VALUE:
return [...args = std::forward(args)] {
// ...
};
}
```
Capture parameter packs by reference:
```c++
template
auto f(Args&&... args){
// BY REFERENCE:
return [&...args = std::forward(args)] {
// ...
};
}
```

### char8_t
Provides a standard type for representing UTF-8 strings.
```c++
char8_t utf8_str[] = u8"\u0123";
```

### constinit
The `constinit` specifier requires that a variable must be initialized at compile-time.
```c++
const char* g() { return "dynamic initialization"; }
constexpr const char* f(bool p) { return p ? "constant initializer" : g(); }

constinit const char* c = f(true); // OK
constinit const char* d = f(false); // ERROR: `g` is not constexpr, so `d` cannot be evaluated at compile-time.
```

## C++20 Library Features

### Concepts library
Concepts are also provided by the standard library for building more complicated concepts. Some of these include:

**Core language concepts:**
- `same_as` - specifies two types are the same.
- `derived_from` - specifies that a type is derived from another type.
- `convertible_to` - specifies that a type is implicitly convertible to another type.
- `common_with` - specifies that two types share a common type.
- `integral` - specifies that a type is an integral type.
- `default_constructible` - specifies that an object of a type can be default-constructed.

**Comparison concepts:**
- `boolean` - specifies that a type can be used in Boolean contexts.
- `equality_comparable` - specifies that `operator==` is an equivalence relation.

**Object concepts:**
- `movable` - specifies that an object of a type can be moved and swapped.
- `copyable` - specifies that an object of a type can be copied, moved, and swapped.
- `semiregular` - specifies that an object of a type can be copied, moved, swapped, and default constructed.
- `regular` - specifies that a type is _regular_, that is, it is both `semiregular` and `equality_comparable`.

**Callable concepts:**
- `invocable` - specifies that a callable type can be invoked with a given set of argument types.
- `predicate` - specifies that a callable type is a Boolean predicate.

See also: [concepts](#concepts).

### Synchronized buffered outputstream
Buffers output operations for the wrapped output stream ensuring synchronization (i.e. no interleaving of output).
```c++
std::osyncstream{std::cout} << "The value of x is:" << x << std::endl;
```

### std::span
A span is a view (i.e. non-owning) of a container providing bounds-checked access to a contiguous group of elements. Since views do not own their elements they are cheap to construct and copy -- a simplified way to think about views is they are holding references to their data. As opposed to maintaining a pointer/iterator and length field, a span wraps both of those up in a single object.

Spans can be dynamically-sized or fixed-sized (known as their *extent*). Fixed-sized spans benefit from bounds-checking.

Span doesn't propogate const so to construct a read-only span use `std::span`.

Example: using a dynamically-sized span to print integers from various containers.
```c++
void print_ints(std::span ints) {
for (const auto n : ints) {
std::cout << n << std::endl;
}
}

print_ints(std::vector{ 1, 2, 3 });
print_ints(std::array{ 1, 2, 3, 4, 5 });

int a[10] = { 0 };
print_ints(a);
// etc.
```

Example: a statically-sized span will fail to compile for containers that don't match the extent of the span.
```c++
void print_three_ints(std::span ints) {
for (const auto n : ints) {
std::cout << n << std::endl;
}
}

print_three_ints(std::vector{ 1, 2, 3 }); // ERROR
print_three_ints(std::array{ 1, 2, 3, 4, 5 }); // ERROR
int a[10] = { 0 };
print_three_ints(a); // ERROR

std::array b = { 1, 2, 3 };
print_three_ints(b); // OK

// You can construct a span manually if required:
std::vector c{ 1, 2, 3 };
print_three_ints(std::span{ c.data(), 3 }); // OK: set pointer and length field.
print_three_ints(std::span{ c.cbegin(), c.cend() }); // OK: use iterator pairs.
```

### Bit operations
C++20 provides a new `` header which provides some bit operations including popcount.
```c++
std::popcount(0u); // 0
std::popcount(1u); // 1
std::popcount(0b1111'0000u); // 4
```

### Math constants
Mathematical constants including PI, Euler's number, etc. defined in the `` header.
```c++
std::numbers::pi; // 3.14159...
std::numbers::e; // 2.71828...
```

### std::is_constant_evaluated
Predicate function which is truthy when it is called in a compile-time context.
```c++
constexpr bool is_compile_time() {
return std::is_constant_evaluated();
}

constexpr bool a = is_compile_time(); // true
bool b = is_compile_time(); // false
```

### std::make_shared supports arrays
```c++
auto p = std::make_shared(5); // pointer to `int[5]`
// OR
auto p = std::make_shared(); // pointer to `int[5]`
```

### starts_with and ends_with on strings
Strings (and string views) now have the `starts_with` and `ends_with` member functions to check if a string starts or ends with the given string.
```c++
std::string str = "foobar";
str.starts_with("foo"); // true
str.ends_with("baz"); // false
```

### Check if associative container has element
Associative containers such as sets and maps have a `contains` member function, which can be used instead of the "find and check end of iterator" idiom.
```c++
std::map map {{1, 'a'}, {2, 'b'}};
map.contains(2); // true
map.contains(123); // false

std::set set {1, 2, 3};
set.contains(2); // true
```

### std::bit_cast
A safer way to reinterpret an object from one type to another.
```c++
float f = 123.0;
int i = std::bit_cast(f);
```

### std::midpoint
Calculate the midpoint of two integers safely (without overflow).
```c++
std::midpoint(1, 3); // == 2
```

### std::to_array
Converts the given array/"array-like" object to a `std::array`.
```c++
std::to_array("foo"); // returns `std::array`
std::to_array({1, 2, 3}); // returns `std::array`

int a[] = {1, 2, 3};
std::to_array(a); // returns `std::array`
```

## C++17 Language Features

### Template argument deduction for class templates
Automatic template argument deduction much like how it's done for functions, but now including class constructors.
```c++
template
struct MyContainer {
T val;
MyContainer() : val{} {}
MyContainer(T val) : val{val} {}
// ...
};
MyContainer c1 {1}; // OK MyContainer
MyContainer c2; // OK MyContainer
```

### Declaring non-type template parameters with auto
Following the deduction rules of `auto`, while respecting the non-type template parameter list of allowable types[\*], template arguments can be deduced from the types of its arguments:
```c++
template
struct my_integer_sequence {
// Implementation here ...
};

// Explicitly pass type `int` as template argument.
auto seq = std::integer_sequence();
// Type is deduced to be `int`.
auto seq2 = my_integer_sequence<0, 1, 2>();
```
\* - For example, you cannot use a `double` as a template parameter type, which also makes this an invalid deduction using `auto`.

### Folding expressions
A fold expression performs a fold of a template parameter pack over a binary operator.
* An expression of the form `(... op e)` or `(e op ...)`, where `op` is a fold-operator and `e` is an unexpanded parameter pack, are called _unary folds_.
* An expression of the form `(e1 op ... op e2)`, where `op` are fold-operators, is called a _binary fold_. Either `e1` or `e2` is an unexpanded parameter pack, but not both.
```c++
template
bool logicalAnd(Args... args) {
// Binary folding.
return (true && ... && args);
}
bool b = true;
bool& b2 = b;
logicalAnd(b, b2, true); // == true
```
```c++
template
auto sum(Args... args) {
// Unary folding.
return (... + args);
}
sum(1.0, 2.0f, 3); // == 6.0
```

### New rules for auto deduction from braced-init-list
Changes to `auto` deduction when used with the uniform initialization syntax. Previously, `auto x {3};` deduces a `std::initializer_list`, which now deduces to `int`.
```c++
auto x1 {1, 2, 3}; // error: not a single element
auto x2 = {1, 2, 3}; // x2 is std::initializer_list
auto x3 {3}; // x3 is int
auto x4 {3.0}; // x4 is double
```

### constexpr lambda
Compile-time lambdas using `constexpr`.
```c++
auto identity = [](int n) constexpr { return n; };
static_assert(identity(123) == 123);
```
```c++
constexpr auto add = [](int x, int y) {
auto L = [=] { return x; };
auto R = [=] { return y; };
return [=] { return L() + R(); };
};

static_assert(add(1, 2)() == 3);
```
```c++
constexpr int addOne(int n) {
return [n] { return n + 1; }();
}

static_assert(addOne(1) == 2);
```

### Lambda capture `this` by value
Capturing `this` in a lambda's environment was previously reference-only. An example of where this is problematic is asynchronous code using callbacks that require an object to be available, potentially past its lifetime. `*this` (C++17) will now make a copy of the current object, while `this` (C++11) continues to capture by reference.
```c++
struct MyObj {
int value {123};
auto getValueCopy() {
return [*this] { return value; };
}
auto getValueRef() {
return [this] { return value; };
}
};
MyObj mo;
auto valueCopy = mo.getValueCopy();
auto valueRef = mo.getValueRef();
mo.value = 321;
valueCopy(); // 123
valueRef(); // 321
```

### Inline variables
The inline specifier can be applied to variables as well as to functions. A variable declared inline has the same semantics as a function declared inline.
```c++
// Disassembly example using compiler explorer.
struct S { int x; };
inline S x1 = S{321}; // mov esi, dword ptr [x1]
// x1: .long 321

S x2 = S{123}; // mov eax, dword ptr [.L_ZZ4mainE2x2]
// mov dword ptr [rbp - 8], eax
// .L_ZZ4mainE2x2: .long 123
```

It can also be used to declare and define a static member variable, such that it does not need to be initialized in the source file.
```c++
struct S {
S() : id{count++} {}
~S() { count--; }
int id;
static inline int count{0}; // declare and initialize count to 0 within the class
};
```

### Nested namespaces
Using the namespace resolution operator to create nested namespace definitions.
```c++
namespace A {
namespace B {
namespace C {
int i;
}
}
}
```

The code above can be written like this:
```c++
namespace A::B::C {
int i;
}
```

### Structured bindings
A proposal for de-structuring initialization, that would allow writing `auto [ x, y, z ] = expr;` where the type of `expr` was a tuple-like object, whose elements would be bound to the variables `x`, `y`, and `z` (which this construct declares). _Tuple-like objects_ include [`std::tuple`](#tuples), `std::pair`, [`std::array`](#stdarray), and aggregate structures.
```c++
using Coordinate = std::pair;
Coordinate origin() {
return Coordinate{0, 0};
}

const auto [ x, y ] = origin();
x; // == 0
y; // == 0
```
```c++
std::unordered_map mapping {
{"a", 1},
{"b", 2},
{"c", 3}
};

// Destructure by reference.
for (const auto& [key, value] : mapping) {
// Do something with key and value
}
```

### Selection statements with initializer
New versions of the `if` and `switch` statements which simplify common code patterns and help users keep scopes tight.
```c++
{
std::lock_guard lk(mx);
if (v.empty()) v.push_back(val);
}
// vs.
if (std::lock_guard lk(mx); v.empty()) {
v.push_back(val);
}
```
```c++
Foo gadget(args);
switch (auto s = gadget.status()) {
case OK: gadget.zip(); break;
case Bad: throw BadFoo(s.message());
}
// vs.
switch (Foo gadget(args); auto s = gadget.status()) {
case OK: gadget.zip(); break;
case Bad: throw BadFoo(s.message());
}
```

### constexpr if
Write code that is instantiated depending on a compile-time condition.
```c++
template
constexpr bool isIntegral() {
if constexpr (std::is_integral::value) {
return true;
} else {
return false;
}
}
static_assert(isIntegral() == true);
static_assert(isIntegral() == true);
static_assert(isIntegral() == false);
struct S {};
static_assert(isIntegral() == false);
```

### UTF-8 character literals
A character literal that begins with `u8` is a character literal of type `char`. The value of a UTF-8 character literal is equal to its ISO 10646 code point value.
```c++
char x = u8'x';
```

### Direct list initialization of enums
Enums can now be initialized using braced syntax.
```c++
enum byte : unsigned char {};
byte b {0}; // OK
byte c {-1}; // ERROR
byte d = byte{1}; // OK
byte e = byte{256}; // ERROR
```

### \[\[fallthrough\]\], \[\[nodiscard\]\], \[\[maybe_unused\]\] attributes
C++17 introduces three new attributes: `[[fallthrough]]`, `[[nodiscard]]` and `[[maybe_unused]]`.
* `[[fallthrough]]` indicates to the compiler that falling through in a switch statement is intended behavior. This attribute may only be used in a switch statement, and must be placed before the next case/default label.
```c++
switch (n) {
case 1:
// ...
[[fallthrough]];
case 2:
// ...
break;
case 3:
// ...
[[fallthrough]];
default:
// ...
}
```

* `[[nodiscard]]` issues a warning when either a function or class has this attribute and its return value is discarded.
```c++
[[nodiscard]] bool do_something() {
return is_success; // true for success, false for failure
}

do_something(); // warning: ignoring return value of 'bool do_something()',
// declared with attribute 'nodiscard'
```
```c++
// Only issues a warning when `error_info` is returned by value.
struct [[nodiscard]] error_info {
// ...
};

error_info do_something() {
error_info ei;
// ...
return ei;
}

do_something(); // warning: ignoring returned value of type 'error_info',
// declared with attribute 'nodiscard'
```

* `[[maybe_unused]]` indicates to the compiler that a variable or parameter might be unused and is intended.
```c++
void my_callback(std::string msg, [[maybe_unused]] bool error) {
// Don't care if `msg` is an error message, just log it.
log(msg);
}
```

### \_\_has\_include

`__has_include (operand)` operator may be used in `#if` and `#elif` expressions to check whether a header or source file (`operand`) is available for inclusion or not.

One use case of this would be using two libraries that work the same way, using the backup/experimental one if the preferred one is not found on the system.

```c++
#ifdef __has_include
# if __has_include()
# include
# define have_optional 1
# elif __has_include()
# include
# define have_optional 1
# define experimental_optional
# else
# define have_optional 0
# endif
#endif
```

It can also be used to include headers existing under different names or locations on various platforms, without knowing which platform the program is running on, OpenGL headers are a good example for this which are located in `OpenGL\` directory on macOS and `GL\` on other platforms.

```c++
#ifdef __has_include
# if __has_include()
# include
# include
# elif __has_include()
# include
# include
# else
# error No suitable OpenGL headers found.
# endif
#endif
```

### Class template argument deduction
*Class template argument deduction* (CTAD) allows the compiler to deduce template arguments from constructor arguments.
```c++
std::vector v{ 1, 2, 3 }; // deduces std::vector

std::mutex mtx;
auto lck = std::lock_guard{ mtx }; // deduces to std::lock_guard

auto p = new std::pair{ 1.0, 2.0 }; // deduces to std::pair
```

For user-defined types, *deduction guides* can be used to guide the compiler how to deduce template arguments if applicable:
```c++
template
struct container {
container(T t) {}

template
container(Iter beg, Iter end);
};

// deduction guide
template
container(Iter b, Iter e) -> container::value_type>;

container a{ 7 }; // OK: deduces container

std::vector v{ 1.0, 2.0, 3.0 };
auto b = container{ v.begin(), v.end() }; // OK: deduces container

container c{ 5, 6 }; // ERROR: std::iterator_traits::value_type is not a type
```

## C++17 Library Features

### std::variant
The class template `std::variant` represents a type-safe `union`. An instance of `std::variant` at any given time holds a value of one of its alternative types (it's also possible for it to be valueless).
```c++
std::variant v{ 12 };
std::get(v); // == 12
std::get<0>(v); // == 12
v = 12.0;
std::get(v); // == 12.0
std::get<1>(v); // == 12.0
```

### std::optional
The class template `std::optional` manages an optional contained value, i.e. a value that may or may not be present. A common use case for optional is the return value of a function that may fail.
```c++
std::optional create(bool b) {
if (b) {
return "Godzilla";
} else {
return {};
}
}

create(false).value_or("empty"); // == "empty"
create(true).value(); // == "Godzilla"
// optional-returning factory functions are usable as conditions of while and if
if (auto str = create(true)) {
// ...
}
```

### std::any
A type-safe container for single values of any type.
```c++
std::any x {5};
x.has_value() // == true
std::any_cast(x) // == 5
std::any_cast(x) = 10;
std::any_cast(x) // == 10
```

### std::string_view
A non-owning reference to a string. Useful for providing an abstraction on top of strings (e.g. for parsing).
```c++
// Regular strings.
std::string_view cppstr {"foo"};
// Wide strings.
std::wstring_view wcstr_v {L"baz"};
// Character arrays.
char array[3] = {'b', 'a', 'r'};
std::string_view array_v(array, std::size(array));
```
```c++
std::string str {" trim me"};
std::string_view v {str};
v.remove_prefix(std::min(v.find_first_not_of(" "), v.size()));
str; // == " trim me"
v; // == "trim me"
```

### std::invoke
Invoke a `Callable` object with parameters. Examples of *callable* objects are `std::function` or lambdas; objects that can be called similarly to a regular function.
```c++
template
class Proxy {
Callable c_;

public:
Proxy(Callable c) : c_{ std::move(c) } {}

template
decltype(auto) operator()(Args&&... args) {
// ...
return std::invoke(c_, std::forward(args)...);
}
};

const auto add = [](int x, int y) { return x + y; };
Proxy p{ add };
p(1, 2); // == 3
```

### std::apply
Invoke a `Callable` object with a tuple of arguments.
```c++
auto add = [](int x, int y) {
return x + y;
};
std::apply(add, std::make_tuple(1, 2)); // == 3
```

### std::filesystem
The new `std::filesystem` library provides a standard way to manipulate files, directories, and paths in a filesystem.

Here, a big file is copied to a temporary path if there is available space:
```c++
const auto bigFilePath {"bigFileToCopy"};
if (std::filesystem::exists(bigFilePath)) {
const auto bigFileSize {std::filesystem::file_size(bigFilePath)};
std::filesystem::path tmpPath {"/tmp"};
if (std::filesystem::space(tmpPath).available > bigFileSize) {
std::filesystem::create_directory(tmpPath.append("example"));
std::filesystem::copy_file(bigFilePath, tmpPath.append("newFile"));
}
}
```

### std::byte
The new `std::byte` type provides a standard way of representing data as a byte. Benefits of using `std::byte` over `char` or `unsigned char` is that it is not a character type, and is also not an arithmetic type; while the only operator overloads available are bitwise operations.
```c++
std::byte a {0};
std::byte b {0xFF};
int i = std::to_integer(b); // 0xFF
std::byte c = a & b;
int j = std::to_integer(c); // 0
```
Note that `std::byte` is simply an enum, and braced initialization of enums become possible thanks to [direct-list-initialization of enums](#direct-list-initialization-of-enums).

### Splicing for maps and sets
Moving nodes and merging containers without the overhead of expensive copies, moves, or heap allocations/deallocations.

Moving elements from one map to another:
```c++
std::map src {{1, "one"}, {2, "two"}, {3, "buckle my shoe"}};
std::map dst {{3, "three"}};
dst.insert(src.extract(src.find(1))); // Cheap remove and insert of { 1, "one" } from `src` to `dst`.
dst.insert(src.extract(2)); // Cheap remove and insert of { 2, "two" } from `src` to `dst`.
// dst == { { 1, "one" }, { 2, "two" }, { 3, "three" } };
```

Inserting an entire set:
```c++
std::set src {1, 3, 5};
std::set dst {2, 4, 5};
dst.merge(src);
// src == { 5 }
// dst == { 1, 2, 3, 4, 5 }
```

Inserting elements which outlive the container:
```c++
auto elementFactory() {
std::set<...> s;
s.emplace(...);
return s.extract(s.begin());
}
s2.insert(elementFactory());
```

Changing the key of a map element:
```c++
std::map m {{1, "one"}, {2, "two"}, {3, "three"}};
auto e = m.extract(2);
e.key() = 4;
m.insert(std::move(e));
// m == { { 1, "one" }, { 3, "three" }, { 4, "two" } }
```

### Parallel algorithms
Many of the STL algorithms, such as the `copy`, `find` and `sort` methods, started to support the *parallel execution policies*: `seq`, `par` and `par_unseq` which translate to "sequentially", "parallel" and "parallel unsequenced".

```c++
std::vector longVector;
// Find element using parallel execution policy
auto result1 = std::find(std::execution::par, std::begin(longVector), std::end(longVector), 2);
// Sort elements using sequential execution policy
auto result2 = std::sort(std::execution::seq, std::begin(longVector), std::end(longVector));
```

### std::sample
Samples n elements in the given sequence (without replacement) where every element has an equal chance of being selected.
```c++
const std::string ALLOWED_CHARS = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
std::string guid;
// Sample 5 characters from ALLOWED_CHARS.
std::sample(ALLOWED_CHARS.begin(), ALLOWED_CHARS.end(), std::back_inserter(guid),
5, std::mt19937{ std::random_device{}() });

std::cout << guid; // e.g. G1fW2
```

### std::clamp
Clamp given value between a lower and upper bound.
```c++
std::clamp(42, -1, 1); // == 1
std::clamp(-42, -1, 1); // == -1
std::clamp(0, -1, 1); // == 0

// `std::clamp` also accepts a custom comparator:
std::clamp(0, -1, 1, std::less<>{}); // == 0
```

### std::reduce
Fold over a given range of elements. Conceptually similar to `std::accumulate`, but `std::reduce` will perform the fold in parallel. Due to the fold being done in parallel, if you specify a binary operation, it is required to be associative and commutative. A given binary operation also should not change any element or invalidate any iterators within the given range.

The default binary operation is std::plus with an initial value of 0.
```c++
const std::array a{ 1, 2, 3 };
std::reduce(std::cbegin(a), std::cend(a)); // == 6
// Using a custom binary op:
std::reduce(std::cbegin(a), std::cend(a), 1, std::multiplies<>{}); // == 6
```
Additionally you can specify transformations for reducers:
```c++
std::transform_reduce(std::cbegin(a), std::cend(a), 0, std::plus<>{}, times_ten); // == 60

const std::array b{ 1, 2, 3 };
const auto product_times_ten = [](const auto a, const auto b) { return a * b * 10; };

std::transform_reduce(std::cbegin(a), std::cend(a), std::cbegin(b), 0, std::plus<>{}, product_times_ten); // == 140
```

### Prefix sum algorithms
Support for prefix sums (both inclusive and exclusive scans) along with transformations.
```c++
const std::array a{ 1, 2, 3 };

std::inclusive_scan(std::cbegin(a), std::cend(a),
std::ostream_iterator{ std::cout, " " }, std::plus<>{}); // 1 3 6

std::exclusive_scan(std::cbegin(a), std::cend(a),
std::ostream_iterator{ std::cout, " " }, 0, std::plus<>{}); // 0 1 3

const auto times_ten = [](const auto n) { return n * 10; };

std::transform_inclusive_scan(std::cbegin(a), std::cend(a),
std::ostream_iterator{ std::cout, " " }, std::plus<>{}, times_ten); // 10 30 60

std::transform_exclusive_scan(std::cbegin(a), std::cend(a),
std::ostream_iterator{ std::cout, " " }, 0, std::plus<>{}, times_ten); // 0 10 30
```

### GCD and LCM
Greatest common divisor (GCD) and least common multiple (LCM).
```c++
const int p = 9;
const int q = 3;
std::gcd(p, q); // == 3
std::lcm(p, q); // == 9
```

### std::not_fn
Utility function that returns the negation of the result of the given function.
```c++
const std::ostream_iterator ostream_it{ std::cout, " " };
const auto is_even = [](const auto n) { return n % 2 == 0; };
std::vector v{ 0, 1, 2, 3, 4 };

// Print all even numbers.
std::copy_if(std::cbegin(v), std::cend(v), ostream_it, is_even); // 0 2 4
// Print all odd (not even) numbers.
std::copy_if(std::cbegin(v), std::cend(v), ostream_it, std::not_fn(is_even)); // 1 3
```

### String conversion to/from numbers
Convert integrals and floats to a string or vice-versa. Conversions are non-throwing, do not allocate, and are more secure than the equivalents from the C standard library.

Users are responsible for allocating enough storage required for `std::to_chars`, or the function will fail by setting the error code object in its return value.

These functions allow you to optionally pass a base (defaults to base-10) or a format specifier for floating type input.

* `std::to_chars` returns a (non-const) char pointer which is one-past-the-end of the string that the function wrote to inside the given buffer, and an error code object.
* `std::from_chars` returns a const char pointer which on success is equal to the end pointer passed to the function, and an error code object.

Both error code objects returned from these functions are equal to the default-initialized error code object on success.

Convert the number `123` to a `std::string`:
```c++
const int n = 123;

// Can use any container, string, array, etc.
std::string str;
str.resize(3); // hold enough storage for each digit of `n`

const auto [ ptr, ec ] = std::to_chars(str.data(), str.data() + str.size(), n);

if (ec == std::errc{}) { std::cout << str << std::endl; } // 123
else { /* handle failure */ }
```

Convert from a `std::string` with value `"123"` to an integer:
```c++
const std::string str{ "123" };
int n;

const auto [ ptr, ec ] = std::from_chars(str.data(), str.data() + str.size(), n);

if (ec == std::errc{}) { std::cout << n << std::endl; } // 123
else { /* handle failure */ }
```

## C++14 Language Features

### Binary literals
Binary literals provide a convenient way to represent a base-2 number.
It is possible to separate digits with `'`.
```c++
0b110 // == 6
0b1111'1111 // == 255
```

### Generic lambda expressions
C++14 now allows the `auto` type-specifier in the parameter list, enabling polymorphic lambdas.
```c++
auto identity = [](auto x) { return x; };
int three = identity(3); // == 3
std::string foo = identity("foo"); // == "foo"
```

### Lambda capture initializers
This allows creating lambda captures initialized with arbitrary expressions. The name given to the captured value does not need to be related to any variables in the enclosing scopes and introduces a new name inside the lambda body. The initializing expression is evaluated when the lambda is _created_ (not when it is _invoked_).
```c++
int factory(int i) { return i * 10; }
auto f = [x = factory(2)] { return x; }; // returns 20

auto generator = [x = 0] () mutable {
// this would not compile without 'mutable' as we are modifying x on each call
return x++;
};
auto a = generator(); // == 0
auto b = generator(); // == 1
auto c = generator(); // == 2
```
Because it is now possible to _move_ (or _forward_) values into a lambda that could previously be only captured by copy or reference we can now capture move-only types in a lambda by value. Note that in the below example the `p` in the capture-list of `task2` on the left-hand-side of `=` is a new variable private to the lambda body and does not refer to the original `p`.
```c++
auto p = std::make_unique(1);

auto task1 = [=] { *p = 5; }; // ERROR: std::unique_ptr cannot be copied
// vs.
auto task2 = [p = std::move(p)] { *p = 5; }; // OK: p is move-constructed into the closure object
// the original p is empty after task2 is created
```
Using this reference-captures can have different names than the referenced variable.
```c++
auto x = 1;
auto f = [&r = x, x = x * 10] {
++r;
return r + x;
};
f(); // sets x to 2 and returns 12
```

### Return type deduction
Using an `auto` return type in C++14, the compiler will attempt to deduce the type for you. With lambdas, you can now deduce its return type using `auto`, which makes returning a deduced reference or rvalue reference possible.
```c++
// Deduce return type as `int`.
auto f(int i) {
return i;
}
```
```c++
template
auto& f(T& t) {
return t;
}

// Returns a reference to a deduced type.
auto g = [](auto& x) -> auto& { return f(x); };
int y = 123;
int& z = g(y); // reference to `y`
```

### decltype(auto)
The `decltype(auto)` type-specifier also deduces a type like `auto` does. However, it deduces return types while keeping their references and cv-qualifiers, while `auto` will not.
```c++
const int x = 0;
auto x1 = x; // int
decltype(auto) x2 = x; // const int
int y = 0;
int& y1 = y;
auto y2 = y1; // int
decltype(auto) y3 = y1; // int&
int&& z = 0;
auto z1 = std::move(z); // int
decltype(auto) z2 = std::move(z); // int&&
```
```c++
// Note: Especially useful for generic code!

// Return type is `int`.
auto f(const int& i) {
return i;
}

// Return type is `const int&`.
decltype(auto) g(const int& i) {
return i;
}

int x = 123;
static_assert(std::is_same::value == 0);
static_assert(std::is_same::value == 1);
static_assert(std::is_same::value == 1);
```

See also: [`decltype (C++11)`](#decltype).

### Relaxing constraints on constexpr functions
In C++11, `constexpr` function bodies could only contain a very limited set of syntaxes, including (but not limited to): `typedef`s, `using`s, and a single `return` statement. In C++14, the set of allowable syntaxes expands greatly to include the most common syntax such as `if` statements, multiple `return`s, loops, etc.
```c++
constexpr int factorial(int n) {
if (n <= 1) {
return 1;
} else {
return n * factorial(n - 1);
}
}
factorial(5); // == 120
```

### Variable templates
C++14 allows variables to be templated:

```c++
template
constexpr T pi = T(3.1415926535897932385);
template
constexpr T e = T(2.7182818284590452353);
```

### [[deprecated]] attribute
C++14 introduces the `[[deprecated]]` attribute to indicate that a unit (function, class, etc.) is discouraged and likely yield compilation warnings. If a reason is provided, it will be included in the warnings.
```c++
[[deprecated]]
void old_method();
[[deprecated("Use new_method instead")]]
void legacy_method();
```

## C++14 Library Features

### User-defined literals for standard library types
New user-defined literals for standard library types, including new built-in literals for `chrono` and `basic_string`. These can be `constexpr` meaning they can be used at compile-time. Some uses for these literals include compile-time integer parsing, binary literals, and imaginary number literals.
```c++
using namespace std::chrono_literals;
auto day = 24h;
day.count(); // == 24
std::chrono::duration_cast(day).count(); // == 1440
```

### Compile-time integer sequences
The class template `std::integer_sequence` represents a compile-time sequence of integers. There are a few helpers built on top:
* `std::make_integer_sequence` - creates a sequence of `0, ..., N - 1` with type `T`.
* `std::index_sequence_for` - converts a template parameter pack into an integer sequence.

Convert an array into a tuple:
```c++
template
decltype(auto) a2t_impl(const Array& a, std::integer_sequence) {
return std::make_tuple(a[I]...);
}

template>
decltype(auto) a2t(const std::array& a) {
return a2t_impl(a, Indices());
}
```

### std::make_unique
`std::make_unique` is the recommended way to create instances of `std::unique_ptr`s due to the following reasons:
* Avoid having to use the `new` operator.
* Prevents code repetition when specifying the underlying type the pointer shall hold.
* Most importantly, it provides exception-safety. Suppose we were calling a function `foo` like so:
```c++
foo(std::unique_ptr{new T{}}, function_that_throws(), std::unique_ptr{new T{}});
```
The compiler is free to call `new T{}`, then `function_that_throws()`, and so on... Since we have allocated data on the heap in the first construction of a `T`, we have introduced a leak here. With `std::make_unique`, we are given exception-safety:
```c++
foo(std::make_unique(), function_that_throws(), std::make_unique());
```

See the section on [smart pointers (C++11)](#smart-pointers) for more information on `std::unique_ptr` and `std::shared_ptr`.

## C++11 Language Features

### Move semantics
Moving an object means to transfer ownership of some resource it manages to another object.

The first benefit of move semantics is performance optimization. When an object is about to reach the end of its lifetime, either because it's a temporary or by explicitly calling `std::move`, a move is often a cheaper way to transfer resources. For example, moving a `std::vector` is just copying some pointers and internal state over to the new vector -- copying would involve having to copy every single contained element in the vector, which is expensive and unnecessary if the old vector will soon be destroyed.

Moves also make it possible for non-copyable types such as `std::unique_ptr`s ([smart pointers](#smart-pointers)) to guarantee at the language level that there is only ever one instance of a resource being managed at a time, while being able to transfer an instance between scopes.

See the sections on: [rvalue references](#rvalue-references), [special member functions for move semantics](#special-member-functions-for-move-semantics), [`std::move`](#stdmove), [`std::forward`](#stdforward), [`forwarding references`](#forwarding-references).

### Rvalue references
C++11 introduces a new reference termed the _rvalue reference_. An rvalue reference to `T`, which is a non-template type parameter (such as `int`, or a user-defined type), is created with the syntax `T&&`. Rvalue references only bind to rvalues.

Type deduction with lvalues and rvalues:
```c++
int x = 0; // `x` is an lvalue of type `int`
int& xl = x; // `xl` is an lvalue of type `int&`
int&& xr = x; // compiler error -- `x` is an lvalue
int&& xr2 = 0; // `xr2` is an lvalue of type `int&&` -- binds to the rvalue temporary, `0`

void f(int& x) {}
void f(int&& x) {}

f(x); // calls f(int&)
f(xl); // calls f(int&)
f(3); // calls f(int&&)
f(std::move(x)); // calls f(int&&)

f(xr2); // calls f(int&)
f(std::move(xr2)); // calls f(int&& x)
```

See also: [`std::move`](#stdmove), [`std::forward`](#stdforward), [`forwarding references`](#forwarding-references).

### Forwarding references
Also known (unofficially) as _universal references_. A forwarding reference is created with the syntax `T&&` where `T` is a template type parameter, or using `auto&&`. This enables _perfect forwarding_: the ability to pass arguments while maintaining their value category (e.g. lvalues stay as lvalues, temporaries are forwarded as rvalues).

Forwarding references allow a reference to bind to either an lvalue or rvalue depending on the type. Forwarding references follow the rules of _reference collapsing_:
* `T& &` becomes `T&`
* `T& &&` becomes `T&`
* `T&& &` becomes `T&`
* `T&& &&` becomes `T&&`

`auto` type deduction with lvalues and rvalues:
```c++
int x = 0; // `x` is an lvalue of type `int`
auto&& al = x; // `al` is an lvalue of type `int&` -- binds to the lvalue, `x`
auto&& ar = 0; // `ar` is an lvalue of type `int&&` -- binds to the rvalue temporary, `0`
```

Template type parameter deduction with lvalues and rvalues:
```c++
// Since C++14 or later:
void f(auto&& t) {
// ...
}

// Since C++11 or later:
template
void f(T&& t) {
// ...
}

int x = 0;
f(0); // T is int, deduces as f(int &&) => f(int&&)
f(x); // T is int&, deduces as f(int& &&) => f(int&)

int& y = x;
f(y); // T is int&, deduces as f(int& &&) => f(int&)

int&& z = 0; // NOTE: `z` is an lvalue with type `int&&`.
f(z); // T is int&, deduces as f(int& &&) => f(int&)
f(std::move(z)); // T is int, deduces as f(int &&) => f(int&&)
```

See also: [`std::move`](#stdmove), [`std::forward`](#stdforward), [`rvalue references`](#rvalue-references).

### Variadic templates
The `...` syntax creates a _parameter pack_ or expands one. A template _parameter pack_ is a template parameter that accepts zero or more template arguments (non-types, types, or templates). A template with at least one parameter pack is called a _variadic template_.
```c++
template
struct arity {
constexpr static int value = sizeof...(T);
};
static_assert(arity<>::value == 0);
static_assert(arity::value == 3);
```

An interesting use for this is creating an _initializer list_ from a _parameter pack_ in order to iterate over variadic function arguments.
```c++
template
auto sum(const First first, const Args... args) -> decltype(first) {
const auto values = {first, args...};
return std::accumulate(values.begin(), values.end(), First{0});
}

sum(1, 2, 3, 4, 5); // 15
sum(1, 2, 3); // 6
sum(1.5, 2.0, 3.7); // 7.2
```

### Initializer lists
A lightweight array-like container of elements created using a "braced list" syntax. For example, `{ 1, 2, 3 }` creates a sequences of integers, that has type `std::initializer_list`. Useful as a replacement to passing a vector of objects to a function.
```c++
int sum(const std::initializer_list& list) {
int total = 0;
for (auto& e : list) {
total += e;
}

return total;
}

auto list = {1, 2, 3};
sum(list); // == 6
sum({1, 2, 3}); // == 6
sum({}); // == 0
```

### Static assertions
Assertions that are evaluated at compile-time.
```c++
constexpr int x = 0;
constexpr int y = 1;
static_assert(x == y, "x != y");
```

### auto
`auto`-typed variables are deduced by the compiler according to the type of their initializer.
```c++
auto a = 3.14; // double
auto b = 1; // int
auto& c = b; // int&
auto d = { 0 }; // std::initializer_list
auto&& e = 1; // int&&
auto&& f = b; // int&
auto g = new auto(123); // int*
const auto h = 1; // const int
auto i = 1, j = 2, k = 3; // int, int, int
auto l = 1, m = true, n = 1.61; // error -- `l` deduced to be int, `m` is bool
auto o; // error -- `o` requires initializer
```

Extremely useful for readability, especially for complicated types:
```c++
std::vector v = ...;
std::vector::const_iterator cit = v.cbegin();
// vs.
auto cit = v.cbegin();
```

Functions can also deduce the return type using `auto`. In C++11, a return type must be specified either explicitly, or using `decltype` like so:
```c++
template
auto add(X x, Y y) -> decltype(x + y) {
return x + y;
}
add(1, 2); // == 3
add(1, 2.0); // == 3.0
add(1.5, 1.5); // == 3.0
```
The trailing return type in the above example is the _declared type_ (see section on [`decltype`](#decltype)) of the expression `x + y`. For example, if `x` is an integer and `y` is a double, `decltype(x + y)` is a double. Therefore, the above function will deduce the type depending on what type the expression `x + y` yields. Notice that the trailing return type has access to its parameters, and `this` when appropriate.

### Lambda expressions
A `lambda` is an unnamed function object capable of capturing variables in scope. It features: a _capture list_; an optional set of parameters with an optional trailing return type; and a body. Examples of capture lists:
* `[]` - captures nothing.
* `[=]` - capture local objects (local variables, parameters) in scope by value.
* `[&]` - capture local objects (local variables, parameters) in scope by reference.
* `[this]` - capture `this` by reference.
* `[a, &b]` - capture objects `a` by value, `b` by reference.

```c++
int x = 1;

auto getX = [=] { return x; };
getX(); // == 1

auto addX = [=](int y) { return x + y; };
addX(1); // == 2

auto getXRef = [&]() -> int& { return x; };
getXRef(); // int& to `x`
```
By default, value-captures cannot be modified inside the lambda because the compiler-generated method is marked as `const`. The `mutable` keyword allows modifying captured variables. The keyword is placed after the parameter-list (which must be present even if it is empty).
```c++
int x = 1;

auto f1 = [&x] { x = 2; }; // OK: x is a reference and modifies the original

auto f2 = [x] { x = 2; }; // ERROR: the lambda can only perform const-operations on the captured value
// vs.
auto f3 = [x]() mutable { x = 2; }; // OK: the lambda can perform any operations on the captured value
```

### decltype
`decltype` is an operator which returns the _declared type_ of an expression passed to it. cv-qualifiers and references are maintained if they are part of the expression. Examples of `decltype`:
```c++
int a = 1; // `a` is declared as type `int`
decltype(a) b = a; // `decltype(a)` is `int`
const int& c = a; // `c` is declared as type `const int&`
decltype(c) d = a; // `decltype(c)` is `const int&`
decltype(123) e = 123; // `decltype(123)` is `int`
int&& f = 1; // `f` is declared as type `int&&`
decltype(f) g = 1; // `decltype(f) is `int&&`
decltype((a)) h = g; // `decltype((a))` is int&
```
```c++
template
auto add(X x, Y y) -> decltype(x + y) {
return x + y;
}
add(1, 2.0); // `decltype(x + y)` => `decltype(3.0)` => `double`
```

See also: [`decltype(auto) (C++14)`](#decltypeauto).

### Type aliases
Semantically similar to using a `typedef` however, type aliases with `using` are easier to read and are compatible with templates.
```c++
template
using Vec = std::vector;
Vec v; // std::vector

using String = std::string;
String s {"foo"};
```

### nullptr
C++11 introduces a new null pointer type designed to replace C's `NULL` macro. `nullptr` itself is of type `std::nullptr_t` and can be implicitly converted into pointer types, and unlike `NULL`, not convertible to integral types except `bool`.
```c++
void foo(int);
void foo(char*);
foo(NULL); // error -- ambiguous
foo(nullptr); // calls foo(char*)
```

### Strongly-typed enums
Type-safe enums that solve a variety of problems with C-style enums including: implicit conversions, inability to specify the underlying type, scope pollution.
```c++
// Specifying underlying type as `unsigned int`
enum class Color : unsigned int { Red = 0xff0000, Green = 0xff00, Blue = 0xff };
// `Red`/`Green` in `Alert` don't conflict with `Color`
enum class Alert : bool { Red, Green };
Color c = Color::Red;
```

### Attributes
Attributes provide a universal syntax over `__attribute__(...)`, `__declspec`, etc.
```c++
// `noreturn` attribute indicates `f` doesn't return.
[[ noreturn ]] void f() {
throw "error";
}
```

### constexpr
Constant expressions are expressions that are *possibly* evaluated by the compiler at compile-time. Only non-complex computations can be carried out in a constant expression (these rules are progressively relaxed in later versions). Use the `constexpr` specifier to indicate the variable, function, etc. is a constant expression.
```c++
constexpr int square(int x) {
return x * x;
}

int square2(int x) {
return x * x;
}

int a = square(2); // mov DWORD PTR [rbp-4], 4

int b = square2(2); // mov edi, 2
// call square2(int)
// mov DWORD PTR [rbp-8], eax
```
In the previous snippet, notice that the computation when calling `square` is carried out at compile-time, and then the result is embedded in the code generation, while `square2` is called at run-time.

`constexpr` values are those that the compiler can evaluate, but are not guaranteed to, at compile-time:
```c++
const int x = 123;
constexpr const int& y = x; // error -- constexpr variable `y` must be initialized by a constant expression
```

Constant expressions with classes:
```c++
struct Complex {
constexpr Complex(double r, double i) : re{r}, im{i} { }
constexpr double real() { return re; }
constexpr double imag() { return im; }

private:
double re;
double im;
};

constexpr Complex I(0, 1);
```

### Delegating constructors
Constructors can now call other constructors in the same class using an initializer list.
```c++
struct Foo {
int foo;
Foo(int foo) : foo{foo} {}
Foo() : Foo(0) {}
};

Foo foo;
foo.foo; // == 0
```

### User-defined literals
User-defined literals allow you to extend the language and add your own syntax. To create a literal, define a `T operator "" X(...) { ... }` function that returns a type `T`, with a name `X`. Note that the name of this function defines the name of the literal. Any literal names not starting with an underscore are reserved and won't be invoked. There are rules on what parameters a user-defined literal function should accept, according to what type the literal is called on.

Converting Celsius to Fahrenheit:
```c++
// `unsigned long long` parameter required for integer literal.
long long operator "" _celsius(unsigned long long tempCelsius) {
return std::llround(tempCelsius * 1.8 + 32);
}
24_celsius; // == 75
```

String to integer conversion:
```c++
// `const char*` and `std::size_t` required as parameters.
int operator "" _int(const char* str, std::size_t) {
return std::stoi(str);
}

"123"_int; // == 123, with type `int`
```

### Explicit virtual overrides
Specifies that a virtual function overrides another virtual function. If the virtual function does not override a parent's virtual function, throws a compiler error.
```c++
struct A {
virtual void foo();
void bar();
};

struct B : A {
void foo() override; // correct -- B::foo overrides A::foo
void bar() override; // error -- A::bar is not virtual
void baz() override; // error -- B::baz does not override A::baz
};
```

### Final specifier
Specifies that a virtual function cannot be overridden in a derived class or that a class cannot be inherited from.
```c++
struct A {
virtual void foo();
};

struct B : A {
virtual void foo() final;
};

struct C : B {
virtual void foo(); // error -- declaration of 'foo' overrides a 'final' function
};
```

Class cannot be inherited from.
```c++
struct A final {};
struct B : A {}; // error -- base 'A' is marked 'final'
```

### Default functions
A more elegant, efficient way to provide a default implementation of a function, such as a constructor.
```c++
struct A {
A() = default;
A(int x) : x{x} {}
int x {1};
};
A a; // a.x == 1
A a2 {123}; // a.x == 123
```

With inheritance:
```c++
struct B {
B() : x{1} {}
int x;
};

struct C : B {
// Calls B::B
C() = default;
};

C c; // c.x == 1
```

### Deleted functions
A more elegant, efficient way to provide a deleted implementation of a function. Useful for preventing copies on objects.
```c++
class A {
int x;

public:
A(int x) : x{x} {};
A(const A&) = delete;
A& operator=(const A&) = delete;
};

A x {123};
A y = x; // error -- call to deleted copy constructor
y = x; // error -- operator= deleted
```

### Range-based for loops
Syntactic sugar for iterating over a container's elements.
```c++
std::array a {1, 2, 3, 4, 5};
for (int& x : a) x *= 2;
// a == { 2, 4, 6, 8, 10 }
```

Note the difference when using `int` as opposed to `int&`:
```c++
std::array a {1, 2, 3, 4, 5};
for (int x : a) x *= 2;
// a == { 1, 2, 3, 4, 5 }
```

### Special member functions for move semantics
The copy constructor and copy assignment operator are called when copies are made, and with C++11's introduction of move semantics, there is now a move constructor and move assignment operator for moves.
```c++
struct A {
std::string s;
A() : s{"test"} {}
A(const A& o) : s{o.s} {}
A(A&& o) : s{std::move(o.s)} {}
A& operator=(A&& o) {
s = std::move(o.s);
return *this;
}
};

A f(A a) {
return a;
}

A a1 = f(A{}); // move-constructed from rvalue temporary
A a2 = std::move(a1); // move-constructed using std::move
A a3 = A{};
a2 = std::move(a3); // move-assignment using std::move
a1 = f(A{}); // move-assignment from rvalue temporary
```

### Converting constructors
Converting constructors will convert values of braced list syntax into constructor arguments.
```c++
struct A {
A(int) {}
A(int, int) {}
A(int, int, int) {}
};

A a {0, 0}; // calls A::A(int, int)
A b(0, 0); // calls A::A(int, int)
A c = {0, 0}; // calls A::A(int, int)
A d {0, 0, 0}; // calls A::A(int, int, int)
```

Note that the braced list syntax does not allow narrowing:
```c++
struct A {
A(int) {}
};

A a(1.1); // OK
A b {1.1}; // Error narrowing conversion from double to int
```

Note that if a constructor accepts a `std::initializer_list`, it will be called instead:
```c++
struct A {
A(int) {}
A(int, int) {}
A(int, int, int) {}
A(std::initializer_list) {}
};

A a {0, 0}; // calls A::A(std::initializer_list)
A b(0, 0); // calls A::A(int, int)
A c = {0, 0}; // calls A::A(std::initializer_list)
A d {0, 0, 0}; // calls A::A(std::initializer_list)
```

### Explicit conversion functions
Conversion functions can now be made explicit using the `explicit` specifier.
```c++
struct A {
operator bool() const { return true; }
};

struct B {
explicit operator bool() const { return true; }
};

A a;
if (a); // OK calls A::operator bool()
bool ba = a; // OK copy-initialization selects A::operator bool()

B b;
if (b); // OK calls B::operator bool()
bool bb = b; // error copy-initialization does not consider B::operator bool()
```
### Inline namespaces
All members of an inline namespace are treated as if they were part of its parent namespace, allowing specialization of functions and easing the process of versioning. This is a transitive property, if A contains B, which in turn contains C and both B and C are inline namespaces, C's members can be used as if they were on A.

```c++
namespace Program {
namespace Version1 {
int getVersion() { return 1; }
bool isFirstVersion() { return true; }
}
inline namespace Version2 {
int getVersion() { return 2; }
}
}

int version {Program::getVersion()}; // Uses getVersion() from Version2
int oldVersion {Program::Version1::getVersion()}; // Uses getVersion() from Version1
bool firstVersion {Program::isFirstVersion()}; // Does not compile when Version2 is added
```

### Non-static data member initializers
Allows non-static data members to be initialized where they are declared, potentially cleaning up constructors of default initializations.

```c++
// Default initialization prior to C++11
class Human {
Human() : age{0} {}
private:
unsigned age;
};
// Default initialization on C++11
class Human {
private:
unsigned age {0};
};
```

### Right angle brackets
C++11 is now able to infer when a series of right angle brackets is used as an operator or as a closing statement of typedef, without having to add whitespace.

```c++
typedef std::map > > cpp98LongTypedef;
typedef std::map>> cpp11LongTypedef;
```

### Ref-qualified member functions
Member functions can now be qualified depending on whether `*this` is an lvalue or rvalue reference.

```c++
struct Bar {
// ...
};

struct Foo {
Bar getBar() & { return bar; }
Bar getBar() const& { return bar; }
Bar getBar() && { return std::move(bar); }
private:
Bar bar;
};

Foo foo{};
Bar bar = foo.getBar(); // calls `Bar getBar() &`

const Foo foo2{};
Bar bar2 = foo2.getBar(); // calls `Bar Foo::getBar() const&`

Foo{}.getBar(); // calls `Bar Foo::getBar() &&`
std::move(foo).getBar(); // calls `Bar Foo::getBar() &&`

std::move(foo2).getBar(); // calls `Bar Foo::getBar() const&&`
```

### Trailing return types
C++11 allows functions and lambdas an alternative syntax for specifying their return types.
```c++
int f() {
return 123;
}
// vs.
auto f() -> int {
return 123;
}
```
```c++
auto g = []() -> int {
return 123;
};
```
This feature is especially useful when certain return types cannot be resolved:
```c++
// NOTE: This does not compile!
template
decltype(a + b) add(T a, U b) {
return a + b;
}

// Trailing return types allows this:
template
auto add(T a, U b) -> decltype(a + b) {
return a + b;
}
```
In C++14, [`decltype(auto) (C++14)`](#decltypeauto) can be used instead.

### Noexcept specifier
The `noexcept` specifier specifies whether a function could throw exceptions. It is an improved version of `throw()`.

```c++
void func1() noexcept; // does not throw
void func2() noexcept(true); // does not throw
void func3() throw(); // does not throw

void func4() noexcept(false); // may throw
```

Non-throwing functions are permitted to call potentially-throwing functions. Whenever an exception is thrown and the search for a handler encounters the outermost block of a non-throwing function, the function std::terminate is called.

```c++
extern void f(); // potentially-throwing
void g() noexcept {
f(); // valid, even if f throws
throw 42; // valid, effectively a call to std::terminate
}
```

### char32_t and char16_t
Provides standard types for representing UTF-8 strings.
```c++
char32_t utf8_str[] = U"\u0123";
char16_t utf8_str[] = u"\u0123";
```

### Raw string literals
C++11 introduces a new way to declare string literals as "raw string literals". Characters issued from an escape sequence (tabs, line feeds, single backslashes, etc.) can be inputted raw while preserving formatting. This is useful, for example, to write literary text, which might contain a lot of quotes or special formatting. This can make your string literals easier to read and maintain.

A raw string literal is declared using the following syntax:
```
R"delimiter(raw_characters)delimiter"
```
where:
* `delimiter` is an optional sequence of characters made of any source character except parentheses, backslashes and spaces.
* `raw_characters` is any raw character sequence; must not contain the closing sequence `")delimiter"`.

Example:
```cpp
// msg1 and msg2 are equivalent.
const char* msg1 = "\nHello,\n\tworld!\n";
const char* msg2 = R"(
Hello,
world!
)";
```

## C++11 Library Features

### std::move
`std::move` indicates that the object passed to it may have its resources transferred. Using objects that have been moved from should be used with care, as they can be left in an unspecified state (see: [What can I do with a moved-from object?](http://stackoverflow.com/questions/7027523/what-can-i-do-with-a-moved-from-object)).

A definition of `std::move` (performing a move is nothing more than casting to an rvalue reference):
```c++
template
typename remove_reference::type&& move(T&& arg) {
return static_cast::type&&>(arg);
}
```

Transferring `std::unique_ptr`s:
```c++
std::unique_ptr p1 {new int{0}}; // in practice, use std::make_unique
std::unique_ptr p2 = p1; // error -- cannot copy unique pointers
std::unique_ptr p3 = std::move(p1); // move `p1` into `p3`
// now unsafe to dereference object held by `p1`
```

### std::forward
Returns the arguments passed to it while maintaining their value category and cv-qualifiers. Useful for generic code and factories. Used in conjunction with [`forwarding references`](#forwarding-references).

A definition of `std::forward`:
```c++
template
T&& forward(typename remove_reference::type& arg) {
return static_cast(arg);
}
```

An example of a function `wrapper` which just forwards other `A` objects to a new `A` object's copy or move constructor:
```c++
struct A {
A() = default;
A(const A& o) { std::cout << "copied" << std::endl; }
A(A&& o) { std::cout << "moved" << std::endl; }
};

template
A wrapper(T&& arg) {
return A{std::forward(arg)};
}

wrapper(A{}); // moved
A a;
wrapper(a); // copied
wrapper(std::move(a)); // moved
```

See also: [`forwarding references`](#forwarding-references), [`rvalue references`](#rvalue-references).

### std::thread
The `std::thread` library provides a standard way to control threads, such as spawning and killing them. In the example below, multiple threads are spawned to do different calculations and then the program waits for all of them to finish.

```c++
void foo(bool clause) { /* do something... */ }

std::vector threadsVector;
threadsVector.emplace_back([]() {
// Lambda function that will be invoked
});
threadsVector.emplace_back(foo, true); // thread will run foo(true)
for (auto& thread : threadsVector) {
thread.join(); // Wait for threads to finish
}
```

### std::to_string
Converts a numeric argument to a `std::string`.
```c++
std::to_string(1.2); // == "1.2"
std::to_string(123); // == "123"
```

### Type traits
Type traits defines a compile-time template-based interface to query or modify the properties of types.
```c++
static_assert(std::is_integral::value);
static_assert(std::is_same::value);
static_assert(std::is_same::type, int>::value);
```

### std::mt19937
The mt19937engine is a high-quality PRNG that produces random numbers with good statistical properties and a long period
```c++
#include

std::random_device rd;
std::mt19937 mt(rd());

std::uniform_int_distribution dist(1, 100);
int random_number = dist(mt);
```

### Smart pointers
C++11 introduces new smart pointers: `std::unique_ptr`, `std::shared_ptr`, `std::weak_ptr`. `std::auto_ptr` now becomes deprecated and then eventually removed in C++17.

`std::unique_ptr` is a non-copyable, movable pointer that manages its own heap-allocated memory. **Note: Prefer using the `std::make_X` helper functions as opposed to using constructors. See the sections for [std::make_unique](https://github.com/AnthonyCalandra/modern-cpp-features/blob/master/CPP14.md#stdmake_unique) and [std::make_shared](#stdmake_shared).**
```c++
std::unique_ptr p1 { new Foo{} }; // `p1` owns `Foo`
if (p1) {
p1->bar();
}

{
std::unique_ptr p2 {std::move(p1)}; // Now `p2` owns `Foo`
f(*p2);

p1 = std::move(p2); // Ownership returns to `p1` -- `p2` gets destroyed
}

if (p1) {
p1->bar();
}
// `Foo` instance is destroyed when `p1` goes out of scope
```

A `std::shared_ptr` is a smart pointer that manages a resource that is shared across multiple owners. A shared pointer holds a _control block_ which has a few components such as the managed object and a reference counter. All control block access is thread-safe, however, manipulating the managed object itself is *not* thread-safe.
```c++
void foo(std::shared_ptr t) {
// Do something with `t`...
}

void bar(std::shared_ptr t) {
// Do something with `t`...
}

void baz(std::shared_ptr t) {
// Do something with `t`...
}

std::shared_ptr p1 {new T{}};
// Perhaps these take place in another threads?
foo(p1);
bar(p1);
baz(p1);
```

### std::chrono
The chrono library contains a set of utility functions and types that deal with _durations_, _clocks_, and _time points_. One use case of this library is benchmarking code:
```c++
std::chrono::time_point start, end;
start = std::chrono::steady_clock::now();
// Some computations...
end = std::chrono::steady_clock::now();

std::chrono::duration elapsed_seconds = end - start;
double t = elapsed_seconds.count(); // t number of seconds, represented as a `double`
```

### Tuples
Tuples are a fixed-size collection of heterogeneous values. Access the elements of a `std::tuple` by unpacking using [`std::tie`](#stdtie), or using `std::get`.
```c++
// `playerProfile` has type `std::tuple`.
auto playerProfile = std::make_tuple(51, "Frans Nielsen", "NYI");
std::get<0>(playerProfile); // 51
std::get<1>(playerProfile); // "Frans Nielsen"
std::get<2>(playerProfile); // "NYI"
```

### std::tie
Creates a tuple of lvalue references. Useful for unpacking `std::pair` and `std::tuple` objects. Use `std::ignore` as a placeholder for ignored values. In C++17, structured bindings should be used instead.
```c++
// With tuples...
std::string playerName;
std::tie(std::ignore, playerName, std::ignore) = std::make_tuple(91, "John Tavares", "NYI");

// With pairs...
std::string yes, no;
std::tie(yes, no) = std::make_pair("yes", "no");
```

### std::array
`std::array` is a container built on top of a C-style array. Supports common container operations such as sorting.
```c++
std::array a = {2, 1, 3};
std::sort(a.begin(), a.end()); // a == { 1, 2, 3 }
for (int& x : a) x *= 2; // a == { 2, 4, 6 }
```

### Unordered containers
These containers maintain average constant-time complexity for search, insert, and remove operations. In order to achieve constant-time complexity, sacrifices order for speed by hashing elements into buckets. There are four unordered containers:
* `unordered_set`
* `unordered_multiset`
* `unordered_map`
* `unordered_multimap`

### std::make_shared
`std::make_shared` is the recommended way to create instances of `std::shared_ptr`s due to the following reasons:
* Avoid having to use the `new` operator.
* Prevents code repetition when specifying the underlying type the pointer shall hold.
* It provides exception-safety. Suppose we were calling a function `foo` like so:
```c++
foo(std::shared_ptr{new T{}}, function_that_throws(), std::shared_ptr{new T{}});
```
The compiler is free to call `new T{}`, then `function_that_throws()`, and so on... Since we have allocated data on the heap in the first construction of a `T`, we have introduced a leak here. With `std::make_shared`, we are given exception-safety:
```c++
foo(std::make_shared(), function_that_throws(), std::make_shared());
```
* Prevents having to do two allocations. When calling `std::shared_ptr{ new T{} }`, we have to allocate memory for `T`, then in the shared pointer we have to allocate memory for the control block within the pointer.

See the section on [smart pointers](#smart-pointers) for more information on `std::unique_ptr` and `std::shared_ptr`.

### std::ref
`std::ref(val)` is used to create object of type `std::reference_wrapper` that holds reference of val. Used in cases when usual reference passing using `&` does not compile or `&` is dropped due to type deduction. `std::cref` is similar but created reference wrapper holds a const reference to val.

```c++
// create a container to store reference of objects.
auto val = 99;
auto _ref = std::ref(val);
_ref++;
auto _cref = std::cref(val);
//_cref++; does not compile
std::vector>vec; // vectorvec does not compile
vec.push_back(_ref); // vec.push_back(&i) does not compile
cout << val << endl; // prints 100
cout << vec[0] << endl; // prints 100
cout << _cref; // prints 100
```

### Memory model
C++11 introduces a memory model for C++, which means library support for threading and atomic operations. Some of these operations include (but aren't limited to) atomic loads/stores, compare-and-swap, atomic flags, promises, futures, locks, and condition variables.

See the sections on: [std::thread](#stdthread)

### std::async
`std::async` runs the given function either asynchronously or lazily-evaluated, then returns a `std::future` which holds the result of that function call.

The first parameter is the policy which can be:
1. `std::launch::async | std::launch::deferred` It is up to the implementation whether to perform asynchronous execution or lazy evaluation.
1. `std::launch::async` Run the callable object on a new thread.
1. `std::launch::deferred` Perform lazy evaluation on the current thread.

```c++
int foo() {
/* Do something here, then return the result. */
return 1000;
}

auto handle = std::async(std::launch::async, foo); // create an async task
auto result = handle.get(); // wait for the result
```

### std::begin/end
`std::begin` and `std::end` free functions were added to return begin and end iterators of a container generically. These functions also work with raw arrays which do not have `begin` and `end` member functions.

```c++
template
int CountTwos(const T& container) {
return std::count_if(std::begin(container), std::end(container), [](int item) {
return item == 2;
});
}

std::vector vec = {2, 2, 43, 435, 4543, 534};
int arr[8] = {2, 43, 45, 435, 32, 32, 32, 32};
auto a = CountTwos(vec); // 2
auto b = CountTwos(arr); // 1
```

## Acknowledgements
* [cppreference](http://en.cppreference.com/w/cpp) - especially useful for finding examples and documentation of new library features.
* [C++ Rvalue References Explained](http://thbecker.net/articles/rvalue_references/section_01.html) - a great introduction I used to understand rvalue references, perfect forwarding, and move semantics.
* [clang](http://clang.llvm.org/cxx_status.html) and [gcc](https://gcc.gnu.org/projects/cxx-status.html)'s standards support pages. Also included here are the proposals for language/library features that I used to help find a description of, what it's meant to fix, and some examples.
* [Compiler explorer](https://godbolt.org/)
* [Scott Meyers' Effective Modern C++](https://www.amazon.com/Effective-Modern-Specific-Ways-Improve/dp/1491903996) - highly recommended series of books!
* [Jason Turner's C++ Weekly](https://www.youtube.com/channel/UCxHAlbZQNFU2LgEtiqd2Maw) - nice collection of C++-related videos.
* [What can I do with a moved-from object?](http://stackoverflow.com/questions/7027523/what-can-i-do-with-a-moved-from-object)
* [What are some uses of decltype(auto)?](http://stackoverflow.com/questions/24109737/what-are-some-uses-of-decltypeauto)

## Author
Anthony Calandra

## Content Contributors
See: https://github.com/AnthonyCalandra/modern-cpp-features/graphs/contributors

## License
MIT