Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lukasmasuch/streamlit-pydantic

🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.
https://github.com/lukasmasuch/streamlit-pydantic

dataclasses forms json-schema pydantic python streamlit streamlit-component streamlit-library type-hints typing

Last synced: 5 days ago
JSON representation

🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.

Awesome Lists containing this project

README

        


Streamlit Pydantic


Auto-generate Streamlit UI elements from Pydantic models.








Getting Started
Documentation
Support
Report a Bug
Contribution
Changelog

Streamlit-pydantic makes it easy to auto-generate UI elements from [Pydantic](https://github.com/samuelcolvin/pydantic/) models or [dataclasses](https://docs.python.org/3/library/dataclasses.html). Just define your data model and turn it into a full-fledged UI form. It supports data validation, nested models, and field limitations. Streamlit-pydantic can be easily integrated into any Streamlit app.

---


Try out and explore various examples in our playground here.

---

## Highlights

- 🪄  Auto-generated UI elements from Pydantic models & Dataclasses.
- 📇  Out-of-the-box data validation.
- 📑  Supports nested Pydantic models.
- 📏  Supports field limits and customizations.
- 🎈  Easy to integrate into any Streamlit app.

## Getting Started

### Installation

```bash
pip install streamlit-pydantic
```

### Usage

1. Create a script (`my_script.py`) with a Pydantic model and render it via `pydantic_form`:

```python
import streamlit as st
import streamlit_pydantic as sp
from pydantic import BaseModel

class ExampleModel(BaseModel):
some_text: str
some_number: int
some_boolean: bool

data = sp.pydantic_form(key="my_sample_form", model=ExampleModel)
if data:
st.json(data.model_dump())
```

2. Run the Streamlit server on the Python script: `streamlit run my_script.py`

3. You can find additional examples in the [examples](#examples) section below.

## Examples

---


👉  Try out and explore these examples in our playground here

---

The following collection of examples demonstrates how Streamlit Pydantic can be applied in more advanced scenarios. You can find additional - even more advanced - examples in the [examples folder](./examples) or on the [playground](https://st-pydantic.streamlit.app/).

### Simple Form

```python
import streamlit as st
import streamlit_pydantic as sp
from pydantic import BaseModel

class ExampleModel(BaseModel):
some_text: str
some_number: int
some_boolean: bool

data = sp.pydantic_form(key="my_sample_form", model=ExampleModel)
if data:
st.json(data.model_dump())
```

### Date Validation

```python
import streamlit as st
import streamlit_pydantic as sp
from pydantic import BaseModel, Field, HttpUrl
from pydantic_extra_types.color import Color

class ExampleModel(BaseModel):
url: HttpUrl
color: Color = Field("blue", format="text")
email: str = Field(..., max_length=100, regex=r"^\S+@\S+$")

data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
st.json(data.model_dump_json())
```

### Dataclasses Support

```python
import dataclasses
import json

import streamlit as st
from pydantic.json import pydantic_encoder

import streamlit_pydantic as sp

@dataclasses.dataclass
class ExampleModel:
some_number: int
some_boolean: bool
some_text: str = "default input"

data = sp.pydantic_form(key="my_dataclass_form", model=ExampleModel)
if data:
st.json(dataclasses.asdict(data))
```

### Complex Nested Model

```python
from enum import Enum
from typing import Set

import streamlit as st
from pydantic import BaseModel, Field

import streamlit_pydantic as sp

class OtherData(BaseModel):
text: str
integer: int

class SelectionValue(str, Enum):
FOO = "foo"
BAR = "bar"

class ExampleModel(BaseModel):
long_text: str = Field(
..., format="multi-line", description="Unlimited text property"
)
integer_in_range: int = Field(
20,
ge=10,
le=30,
multiple_of=2,
description="Number property with a limited range.",
)
single_selection: SelectionValue = Field(
..., description="Only select a single item from a set."
)
multi_selection: Set[SelectionValue] = Field(
..., description="Allows multiple items from a set."
)
read_only_text: str = Field(
"Lorem ipsum dolor sit amet",
description="This is a ready only text.",
readOnly=True,
)
single_object: OtherData = Field(
...,
description="Another object embedded into this model.",
)

data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
st.json(data.model_dump_json())
```

### Render Input

```python
from pydantic import BaseModel

import streamlit_pydantic as sp

class ExampleModel(BaseModel):
some_text: str
some_number: int = 10 # Optional
some_boolean: bool = True # Option

input_data = sp.pydantic_input(
"model_input", model=ExampleModel, group_optional_fields="sidebar"
)
```

### Render Output

```python
import datetime

from pydantic import BaseModel, Field

import streamlit_pydantic as sp

class ExampleModel(BaseModel):
text: str = Field(..., description="A text property")
integer: int = Field(..., description="An integer property.")
date: datetime.date = Field(..., description="A date.")

instance = ExampleModel(text="Some text", integer=40, date=datetime.date.today())
sp.pydantic_output(instance)
```

### Custom Form

```python
import streamlit as st
from pydantic import BaseModel

import streamlit_pydantic as sp

class ExampleModel(BaseModel):
some_text: str
some_number: int = 10
some_boolean: bool = True

with st.form(key="pydantic_form"):
data = sp.pydantic_input(key="my_custom_form_model", model=ExampleModel)
submit_button = st.form_submit_button(label="Submit")
obj = ExampleModel(data)

if data:
st.json(obj.model_dump())
```

## Support & Feedback

| Type | Channel |
| ------------------------ | ------------------------------------------------------ |
| 🐛  **Bug Reports** | |
| ✨  **Feature Requests** | |
| 👩‍💻  **Usage Questions** | |
| 📢  **Announcements** | |

## Documentation

The API documentation can be found [here](./docs). To generate UI elements, you can use the high-level [`pydantic_form`](./docs/streamlit_pydantic.ui_renderer.md#function-pydantic_form) method. Or the more flexible lower-level [`pydantic_input`](./docs/streamlit_pydantic.ui_renderer.md#function-pydantic_input) and [`pydantic_output`](./docs/streamlit_pydantic.ui_renderer.md#function-pydantic_output) methods. See the [examples](#examples) section on how to use those methods.

## Contribution

- Pull requests are encouraged and always welcome. Read our [contribution guidelines](https://github.com/lukasmasuch/streamlit-pydantic/tree/main/CONTRIBUTING.md) and check out [help-wanted](https://github.com/lukasmasuch/streamlit-pydantic/issues?utf8=%E2%9C%93&q=is%3Aopen+is%3Aissue+label%3A"help+wanted"+sort%3Areactions-%2B1-desc+) issues.
- Submit Github issues for any [feature request and enhancement](https://github.com/lukasmasuch/streamlit-pydantic/issues/new?assignees=&labels=type%3Aenhancement%2Cstatus%3Aneeds-triage&projects=&template=02_feature-request.yml), [bugs](https://github.com/lukasmasuch/streamlit-pydantic/issues/new?assignees=&labels=type%3Abug%2Cstatus%3Aneeds-triage&projects=&template=01_bug-report.yml), or [documentation](https://github.com/lukasmasuch/streamlit-pydantic/issues/new?assignees=&labels=type%3Adocs%2Cstatus%3Aneeds-triage&projects=&template=03_documentation.yml) problems.
- By participating in this project, you agree to abide by its [Code of Conduct](https://github.com/lukasmasuch/streamlit-pydantic/blob/main/.github/CODE_OF_CONDUCT.md).
- The [development section](#development) below contains information on how to build and test the project after you have implemented some changes.

## Development


Linting & testing
Ruff
Rye
mypy

This repo uses [Rye](https://rye.astral.sh/) for development. To get started, [install Rye](https://rye.astral.sh/) and sync the project:

```bash
rye sync
```

Run the playground app:

```bash
rye run playground
```

Run linting and type checks:

```bash
rye run checks
```

> [!TIP]
> The linting and formatting is using [ruff](https://github.com/astral-sh/ruff) and
> type-checking is done with [mypy](https://github.com/python/mypy). You can use
> the ruff and mypy extensions of your IDE to automatically run these checks
> during development.

Format the code:

```bash
rye run format
```

Run tests:

```bash
rye test
```

---

Licensed **MIT**.