Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/luozhouyang/keras-crf

A more elegant and convenient CRF built on tensorflow-addons.
https://github.com/luozhouyang/keras-crf

crf keras tensorflow-addons tensorflow2

Last synced: 4 days ago
JSON representation

A more elegant and convenient CRF built on tensorflow-addons.

Awesome Lists containing this project

README

        

# keras-crf

![Python package](https://github.com/luozhouyang/keras-crf/workflows/Python%20package/badge.svg)
[![PyPI version](https://badge.fury.io/py/keras-crf.svg)](https://badge.fury.io/py/keras-crf)
[![Python](https://img.shields.io/pypi/pyversions/keras-crf.svg?style=plastic)](https://badge.fury.io/py/keras-crf)

A more elegant and convenient CRF built on tensorflow-addons.

> Python Compatibility is limited to [tensorflow/addons](https://github.com/tensorflow/addons), you can check the compatibility from it's home page.

## Installation

```bash
pip install keras-crf
```

## Usage

Here is an example to show you how to build a CRF model easily:

```python
import tensorflow as tf

from keras_crf import CRFModel

# build backbone model, you can use large models like BERT
sequence_input = tf.keras.layers.Input(shape=(None,), dtype=tf.int32, name='sequence_input')
outputs = tf.keras.layers.Embedding(21128, 128)(sequence_input)
outputs = tf.keras.layers.Dense(256)(outputs)
base = tf.keras.Model(inputs=sequence_input, outputs=outputs)

# build CRFModel, 5 is num of tags
model = CRFModel(base, 5)

# no need to specify a loss for CRFModel, model will compute crf loss by itself
model.compile(
optimizer=tf.keras.optimizers.Adam(3e-4)
metrics=['acc'],
)
model.summary()

# you can now train this model
model.fit(dataset, epochs=10, callbacks=None)
```

The model summary:

```bash
Model: "crf_model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
sequence_input (InputLayer) [(None, None)] 0
__________________________________________________________________________________________________
embedding (Embedding) (None, None, 128) 2704384 sequence_input[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, None, 256) 33024 embedding[0][0]
__________________________________________________________________________________________________
crf (CRF) [(None, None), (None 1320 dense[0][0]
__________________________________________________________________________________________________
decode_sequence (Lambda) (None, None) 0 crf[0][0]
__________________________________________________________________________________________________
potentials (Lambda) (None, None, 5) 0 crf[0][1]
__________________________________________________________________________________________________
sequence_length (Lambda) (None,) 0 crf[0][2]
__________________________________________________________________________________________________
kernel (Lambda) (5, 5) 0 crf[0][3]
==================================================================================================
Total params: 2,738,728
Trainable params: 2,738,728
Non-trainable params: 0
__________________________________________________________________________________________________
```