An open API service indexing awesome lists of open source software.

https://github.com/lusinlu/epe-module

[ICIP2022] Entropy guided feature extraction for real time semantic segmentation
https://github.com/lusinlu/epe-module

artificial-intelligence machine-learning mobile-networks mobilenet pytorch pytorch-implementation real-time-semantic-segmentation semantic-segmentation

Last synced: 3 months ago
JSON representation

[ICIP2022] Entropy guided feature extraction for real time semantic segmentation

Awesome Lists containing this project

README

        

# EPE Module
[ICIP 2022] Official implementation of the [paper](https://arxiv.org/abs/2207.03233) "Entropy-Based Feature Extraction For Real-Time Semantic Segmentation".

## Usage (test)
Pretrained RTEffNet+EPE model is available from [Google Drive](https://drive.google.com/file/d/12H8WmfGOX4cZ9jeFPAo6aHU7LzD7HtBE/view?usp=sharing). For the testing of the model using the Cityscapes validation set run the following command:

`python test.py --data_path path/to/validation/set --cuda --weights path/to/downloaded/weight `

## Usage (train)
To train the RTEffNet+EPE module on Cityscapes dataset run the following command:

` python main.py --dataset cityscapes --data_path ../../datasets/cityscapes/ --cuda`

## Architecture

## Citation
If you find the code useful for your research, please consider citing our works

```
@article{abrahamyanepe,
title={Entropy-Based Feature Extraction For Real-Time Semantic Segmentation},
author={Lusine, Abrahamyan and Nikos, Deligiannis},
journal={Proceedings of the IEEE International Conference on Image Processing (ICIP)},
publisher = {IEEE},
year={2022}
}
```

## Acknowledgement
Code for EfficientNet is borrowed from [EfficientNet-PyTorch](https://github.com/lukemelas/EfficientNet-PyTorch) and for the Cityscapes loader from [TORCHVISION.DATASETS](https://pytorch.org/vision/0.8/datasets.html) and [pytorch-semantic-segmentation](https://github.com/zijundeng/pytorch-semantic-segmentation).