Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lutzroeder/Netron
Visualizer for neural network, deep learning and machine learning models
https://github.com/lutzroeder/Netron
ai caffe coreml darknet deep-learning deeplearning keras machine-learning machinelearning ml neural-network onnx paddle pytorch tensorflow tensorflow-lite visualizer
Last synced: 3 months ago
JSON representation
Visualizer for neural network, deep learning and machine learning models
- Host: GitHub
- URL: https://github.com/lutzroeder/Netron
- Owner: lutzroeder
- License: mit
- Created: 2010-12-26T12:53:43.000Z (about 14 years ago)
- Default Branch: main
- Last Pushed: 2024-05-22T01:14:59.000Z (8 months ago)
- Last Synced: 2024-05-22T15:53:47.240Z (8 months ago)
- Topics: ai, caffe, coreml, darknet, deep-learning, deeplearning, keras, machine-learning, machinelearning, ml, neural-network, onnx, paddle, pytorch, tensorflow, tensorflow-lite, visualizer
- Language: JavaScript
- Homepage: https://netron.app
- Size: 51 MB
- Stars: 26,396
- Watchers: 295
- Forks: 2,681
- Open Issues: 24
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-MXNet - Netron
- awesome-robotic-tooling - Netron - Visualizer for neural network, deep learning and machine learning models. (Sensor Processing / Machine Learning)
README
Netron is a viewer for neural network, deep learning and machine learning models.
Netron supports ONNX, TensorFlow Lite, Core ML, Keras, Caffe, Darknet, PyTorch, TensorFlow.js, Safetensors and NumPy.
Netron has experimental support for TorchScript, TensorFlow, MXNet, OpenVINO, RKNN, ML.NET, ncnn, MNN, PaddlePaddle, GGUF and scikit-learn.
## Install
**macOS**: [**Download**](https://github.com/lutzroeder/netron/releases/latest) the `.dmg` file or run `brew install --cask netron`
**Linux**: [**Download**](https://github.com/lutzroeder/netron/releases/latest) the `.AppImage` file or run `snap install netron`
**Windows**: [**Download**](https://github.com/lutzroeder/netron/releases/latest) the `.exe` installer or run `winget install -s winget netron`
**Browser**: [**Start**](https://netron.app) the browser version.
**Python**: Run `pip install netron` and `netron [FILE]` or `netron.start('[FILE]')`.
## Models
Sample model files to download or open using the browser version:
* **ONNX**: [squeezenet](https://github.com/onnx/models/raw/main/validated/vision/classification/squeezenet/model/squeezenet1.0-3.onnx) [[open](https://netron.app?url=https://github.com/onnx/models/raw/main/validated/vision/classification/squeezenet/model/squeezenet1.0-3.onnx)]
* **TensorFlow Lite**: [yamnet](https://huggingface.co/thelou1s/yamnet/resolve/main/lite-model_yamnet_tflite_1.tflite) [[open](https://netron.app?url=https://huggingface.co/thelou1s/yamnet/blob/main/lite-model_yamnet_tflite_1.tflite)]
* **TensorFlow**: [chessbot](https://github.com/srom/chessbot/raw/master/model/chessbot.pb) [[open](https://netron.app?url=https://github.com/srom/chessbot/raw/master/model/chessbot.pb)]
* **Keras**: [mobilenet](https://github.com/aio-libs/aiohttp-demos/raw/master/demos/imagetagger/tests/data/mobilenet.h5) [[open](https://netron.app?url=https://github.com/aio-libs/aiohttp-demos/raw/master/demos/imagetagger/tests/data/mobilenet.h5)]
* **TorchScript**: [traced_online_pred_layer](https://github.com/ApolloAuto/apollo/raw/master/modules/prediction/data/traced_online_pred_layer.pt) [[open](https://netron.app?url=https://github.com/ApolloAuto/apollo/raw/master/modules/prediction/data/traced_online_pred_layer.pt)]
* **Core ML**: [exermote](https://github.com/Lausbert/Exermote/raw/master/ExermoteInference/ExermoteCoreML/ExermoteCoreML/Model/Exermote.mlmodel) [[open](https://netron.app?url=https://github.com/Lausbert/Exermote/raw/master/ExermoteInference/ExermoteCoreML/ExermoteCoreML/Model/Exermote.mlmodel)]
* **Darknet**: [yolo](https://github.com/AlexeyAB/darknet/raw/master/cfg/yolo.cfg) [[open](https://netron.app?url=https://github.com/AlexeyAB/darknet/raw/master/cfg/yolo.cfg)]