Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lxe/llavavision

A simple "Be My Eyes" web app with a llama.cpp/llava backend
https://github.com/lxe/llavavision

ai artificial-intelligence computer-vision llama llamacpp llm local-llm machine-learning multimodal webapp

Last synced: 1 day ago
JSON representation

A simple "Be My Eyes" web app with a llama.cpp/llava backend

Awesome Lists containing this project

README

        

# LLaVaVision

![Screenshot](screenshot.gif)

A simple "Be My Eyes" web app with a llama.cpp/llava backend created in about an hour using ChatGPT, Copilot, and some minor help from me, [@lxe](https://twitter.com/lxe). It describes what it sees using [SkunkworksAI BakLLaVA-1](https://huggingface.co/SkunkworksAI/BakLLaVA-1) model via [llama.cpp](https://github.com/ggerganov/llama.cpp) and narrates the text using [Web Speech API](https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API).

Inspired by [Fuzzy-Search/realtime-bakllava](https://github.com/Fuzzy-Search/realtime-bakllava).

## Getting Started

You will need a machine with about ~5 GB of RAM/VRAM for the q4_k version.

### Set up the llama.cpp server

(Optional) Install the CUDA toolkit:

```shell
sudo apt install nvidia-cuda-toolkit
```

Build llama.cpp (build instructions for various platforms at [llama.cpp build](https://github.com/ggerganov/llama.cpp#build)):

```shell
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
mkdir build
cd build
cmake .. -DLLAMA_CUBLAS=ON # Remove the flag if CUDA is unavailable
cmake --build . --config Release
```

Download the models from [ggml_bakllava-1](https://huggingface.co/mys/ggml_bakllava-1/tree/main):

```shell
wget https://huggingface.co/mys/ggml_bakllava-1/resolve/main/mmproj-model-f16.gguf
wget https://huggingface.co/mys/ggml_bakllava-1/resolve/main/ggml-model-q4_k.gguf # Choose another quant if preferred
```

Start the server (server options detailed [here](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md)):

```shell
./bin/server -m ggml-model-q4_k.gguf --mmproj mmproj-model-f16.gguf -ngl 35 -ts 100,0 # For GPU-only, single GPU
# ./bin/server -m ggml-model-q4_k.gguf --mmproj mmproj-model-f16.gguf # For CPU
```

### Launch LLaVaVision

Clone and set up the environment:

```shell
git clone https://github.com/lxe/llavavision
cd llavavision
python3 -m venv venv
. ./venv/bin/activate
pip install -r requirements.txt
```

Create dummy certificates and start the server. HTTPS is required for mobile video functionality:

```shell
openssl req -newkey rsa:4096 -x509 -sha256 -days 365 -nodes -out cert.pem -keyout key.pem
flask run --host=0.0.0.0 --key key.pem --cert cert.pem --debug
```

Access https://your-machine-ip:5000 from your mobile device. Optionally, start a local tunnel with ngrok or localtunnel:

```shell
npx localtunnel --local-https --allow-invalid-cert --port 5000
```

## Acknowledgements and Inspiration

- [Fuzzy-Search/realtime-bakllava](https://github.com/Fuzzy-Search/realtime-bakllava)
- [Multimodal LLama.cpp](https://github.com/ggerganov/llama.cpp/issues/3332)
- [llava-vl.github.io](https://llava-vl.github.io/)
- [SkunkworksAI/BakLLaVA-1](https://huggingface.co/SkunkworksAI/BakLLaVA-1)