Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lxtGH/CAE

This is a PyTorch implementation of “Context AutoEncoder for Self-Supervised Representation Learning"
https://github.com/lxtGH/CAE

context-autoencoder masked-image-modeling self-supervised-learning

Last synced: 2 months ago
JSON representation

This is a PyTorch implementation of “Context AutoEncoder for Self-Supervised Representation Learning"

Awesome Lists containing this project

README

        

# CAE: Context AutoEncoder for Self-Supervised Representation Learning



This is a PyTorch implementation of [CAE: Context AutoEncoder for Self-Supervised Representation Learning](https://arxiv.org/abs/2202.03026).

## Highlights

- State-of-the-art MIM performance. Results in the paper are successfully reproduced.

## Installation

Clone the repo and install required packages.
```bash
pip install -r requirements.txt

# install apex
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```

## Data Preparation
First, download ImageNet-1k from http://image-net.org/.

The directory structure is the standard layout of torchvision's datasets.ImageFolder. The training and validation data are expected to be in the train/ folder and val folder, respectively:

```
/path/to/imagenet/
train/
class1/
img1.jpeg
class2/
img2.jpeg
val/
class1/
img3.jpeg
class/2
img4.jpeg
```

Second, download the pretrained tokenizer.

```bash
TOKENIZER_PATH=/path/to/save/dall_e_tokenizer_weight
mkdir -p $TOKENIZER_PATH
wget -o $TOKENIZER_PATH/encoder.pkl https://cdn.openai.com/dall-e/encoder.pkl
wget -o $TOKENIZER_PATH/decoder.pkl https://cdn.openai.com/dall-e/decoder.pkl
```

## Pretraining

Here is an example that pretrains CAE-base on ImageNet-1K with 32 GPUs. Please see [scripts/cae_base_800e.sh](scripts/cae_base_800e.sh) for complete script.
```bash
OMP_NUM_THREADS=1 $PYTHON -m torch.distributed.launch \
--nproc_per_node=8 \
tools/run_pretraining.py \
--data_path ${DATA_PATH} \
--output_dir ${OUTPUT_DIR} \
--model cae_base_patch16_224_8k_vocab --discrete_vae_weight_path ${TOKENIZER_PATH} \
--batch_size 64 --lr 1.5e-3 --warmup_epochs 20 --epochs 800 \
--clip_grad 3.0 --layer_scale_init_value 0.1 \
--imagenet_default_mean_and_std \
--color_jitter 0 \
--drop_path 0.1 \
--sincos_pos_emb \
--mask_generator block \
--num_mask_patches 98 \
--decoder_layer_scale_init_value 0.1 \
--no_auto_resume \
--save_ckpt_freq 100 \
--exp_name $my_name \
--regressor_depth 4 \
--decoder_depth 4 \
--align_loss_weight 2
```
- `--num_mask_patches`: number of the input patches need be masked.
- `--batch_size`: batch size per GPU.
- Effective batch size = `number of GPUs` * `--batch_size`. So in the above example, the effective batch size is `64*32 = 2048`.
- `--lr`: learning rate.
- `--warmup_epochs`: learning rate warmup epochs. Warm up [10, 20, 40] epochs for [300, 800, 1600] pretrain epochs respectively.
- `--epochs`: total pretraining epochs.
- `--clip_grad`: clip gradient norm.
- `--drop_path`: stochastic depth rate.
- `--imagenet_default_mean_and_std`: enable this for ImageNet-1k pretraining, i.e., `(0.485, 0.456, 0.406)` for mean and `(0.229, 0.224, 0.225)` for std. For other pretraining data, use `(0.5, 0.5, 0.5)` for mean and `(0.5, 0.5, 0.5)` for std by default.
- `--layer_scale_init_value`: 0.1 for base, 1e-5 for large, set 0 to disable layerscale. We set `--decoder_layer_scale_init_value` the same as this.
- `--sincos_pos_emb`: adopt sin-cos positional embedding during pretraining.
- `--regressor_depth`: length of the regressor.
- `--decoder_depth`: length of the decoder.
- `--align_loss_weight`: weight for alignment loss. 2 by default.

Warmup epochs for 300/800/1600 epochs pretraining are 10/20/40.

For CAE-large, please refer to [scripts/cae_large_1600e.sh](scripts/cae_large_1600e.sh).

## Results
Here provides the results of CAE-base/CAE-large for these evaluation tasks:
- Linear probing
- Attentive probing
- Fine-tuning
- Semantic segmentation
- Object detection and instance segmentation

Pretrained weights and logs are available ([Google Drive](https://drive.google.com/drive/folders/1wwhg7nj2GQuU9uthVuQLkEEXEjx90G7g?usp=sharing), [Baidu Cloud [Code: 4kil]](https://pan.baidu.com/s/15eZGoI72iLupLrOHqmOM9w)). *: from CAE paper.

| Model | Pretraining data | #Epoch | Linear | Attentive | Fine-tuning | ADE Seg | COCO Det | COCO InstSeg |
| ---------- | ---------------- | ------ | ------ | --------- | ----------- | ------- | -------- | ------------ |
| MAE-base* | ImageNet-1K | 1600 | 67.8 | 74.2 | 83.6 | 48.1 | 48.4 | 42.6 |
| MAE-large* | ImageNet-1K | 1600 | 76.0 | 78.8 | 86.0 | 53.6 | 54.0 | 47.1 |
| CAE-base | ImageNet-1K | 300 | 64.5 | 74.0 | 83.6 | 48.1 | 48.3 | 42.7 |
| CAE-base | ImageNet-1K | 800 | 68.9 | 75.9 | 83.8 | 49.7 | 49.9 | 43.9 |
| CAE-base | ImageNet-1K | 1600 | 70.3 | 77.2 | 83.9 | 50.3 | 50.3 | 44.2 |
| CAE-large | ImageNet-1K | 1600 | 77.8 | 81.2 | 86.2 | 54.9 | 54.5 | 47.5 |

### Linear Probing
- Please refer to [scripts/cae_base_800e.sh](scripts/cae_base_800e.sh) (32 GPUs).
- For CAE-large, just replace `--model cae_base_patch16_224` with `--model cae_large_patch16_224`.

### Attentive Probing

- Please refer to [scripts/cae_base_800e.sh](scripts/cae_base_800e.sh) (32 GPUs).
- For CAE-large, just replace `--model cae_base_patch16_224` with `--model cae_large_patch16_224`.

### Fine-tuning
- Please refer to [scripts/cae_base_finetune.sh](scripts/cae_base_finetune.sh) (32 GPUs).
- For CAE-large, please refer to [scripts/cae_large_finetune.sh](scripts/cae_large_finetune.sh) (32 GPUs).

### Segmentation & Detection
- Please refer to [downstream_tasks](./downstream_tasks) dir to get started.

## Acknowledgement

This repository is built using the [BEiT](https://github.com/microsoft/unilm/edit/master/beit) and [MMSelfSup](https://github.com/open-mmlab/mmselfsup), thanks for their open-source code! Thanks also to the CAE authors for their excellent work!

## Citation
```bibtex
@article{ContextAutoencoder2022,
title={Context Autoencoder for Self-Supervised Representation Learning},
author={Chen, Xiaokang and Ding, Mingyu and Wang, Xiaodi and Xin, Ying and Mo, Shentong and Wang, Yunhao and Han, Shumin and Luo, Ping and Zeng, Gang and Wang, Jingdong},
journal={arXiv preprint arXiv:2202.03026},
year={2022}
}
```