Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/lyeoni/pytorch-mnist-vae
https://github.com/lyeoni/pytorch-mnist-vae
autoencoder deep-learning generative-model mnist pytorch vae
Last synced: 9 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/lyeoni/pytorch-mnist-vae
- Owner: lyeoni
- Created: 2018-10-23T05:21:47.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2018-10-25T05:47:13.000Z (about 6 years ago)
- Last Synced: 2023-09-28T11:29:16.091Z (about 1 year ago)
- Topics: autoencoder, deep-learning, generative-model, mnist, pytorch, vae
- Language: Jupyter Notebook
- Size: 10.8 MB
- Stars: 94
- Watchers: 4
- Forks: 44
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# pytorch-mnist-VAE
Variational AutoEncoder on the MNIST data set using the PyTorch## Dependencies
- PyTorch
- torchvision
- numpy## Results
Generated samples from 2-D latent variable with random numbers from a normal distribution with mean 0 and variance 1![alt text](https://github.com/lyeoni/pytorch-mnist-VAE/blob/master/samples/sample_.png)
## Reference
1. Auto-Encoding Variational Bayes. Diederik P Kingma, Max Welling (paper):
https://arxiv.org/abs/1312.6114
2. 오토인코더의 모든 것 (slides):
https://www.slideshare.net/NaverEngineering/ss-96581209
3. Basic VAE Example (github):
https://github.com/pytorch/examples/tree/master/vae
4. hwalsuklee/tensorflow-mnist-VAE (github):
https://github.com/hwalsuklee/tensorflow-mnist-VAE