Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lzkelley/kalepy

Kernel Density Estimation and (re)sampling
https://github.com/lzkelley/kalepy

kde kernel-density-estimation pdfs python python3 resample resampling statistical-analysis statistics

Last synced: about 4 hours ago
JSON representation

Kernel Density Estimation and (re)sampling

Awesome Lists containing this project

README

        

# kalepy: Kernel Density Estimation and Sampling

[![build](https://github.com/lzkelley/kalepy/actions/workflows/unit-tests-ci.yaml/badge.svg)](https://github.com/lzkelley/kalepy/actions/workflows/unit-tests-ci.yaml)
[![codecov](https://codecov.io/gh/lzkelley/kalepy/branch/master/graph/badge.svg)](https://codecov.io/gh/lzkelley/kalepy)
[![Documentation Status](https://readthedocs.org/projects/kalepy/badge/?version=latest)](https://kalepy.readthedocs.io/en/latest/?badge=latest)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.02784/status.svg)](https://doi.org/10.21105/joss.02784)
[![DOI](https://zenodo.org/badge/187267055.svg)](https://zenodo.org/badge/latestdoi/187267055)

![kalepy animated logo](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/logo_anim_small.gif)

This package performs KDE operations on multidimensional data to: **1) calculate estimated PDFs** (probability distribution functions), and **2) resample new data** from those PDFs.

## Documentation

A number of examples (also used for continuous integration testing) are included in [the package notebooks](https://github.com/lzkelley/kalepy/tree/master/notebooks). Some background information and references are included in [the JOSS paper](https://joss.theoj.org/papers/10.21105/joss.02784).

Full documentation is available on [kalepy.readthedocs.io](https://kalepy.readthedocs.io/en/latest/).

## README Contents

- [Installation](#Installation)
- Quickstart
- [Basic Usage](#Basic-Usage)
- [Fancy Usage](#Fancy-Usage)
- [Development & Contributions](#Development-&-Contributions)
- [Attribution (citation)](#Attribution)

## Installation

#### from pypi (i.e. via pip)

```bash
pip install kalepy
```

#### from source (e.g. for development)

```bash
git clone https://github.com/lzkelley/kalepy.git
pip install -e kalepy/
```

In this case the package can easily be updated by changing into the source directory, pulling, and rebuilding:

```bash
cd kalepy
git pull
pip install -e .
# Optional: run unit tests (using the `pytest` package)
pytest
```

# Basic Usage

```python
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

import kalepy as kale

from kalepy.plot import nbshow
```

Generate some random data, and its corresponding distribution function

```python
NUM = int(1e4)
np.random.seed(12345)
# Combine data from two different PDFs
_d1 = np.random.normal(4.0, 1.0, NUM)
_d2 = np.random.lognormal(0, 0.5, size=NUM)
data = np.concatenate([_d1, _d2])

# Calculate the "true" distribution
xx = np.linspace(0.0, 7.0, 100)[1:]
yy = 0.5*np.exp(-(xx - 4.0)**2/2) / np.sqrt(2*np.pi)
yy += 0.5 * np.exp(-np.log(xx)**2/(2*0.5**2)) / (0.5*xx*np.sqrt(2*np.pi))
```

### Plotting Smooth Distributions

```python
# Reconstruct the probability-density based on the given data points.
points, density = kale.density(data, probability=True)

# Plot the PDF
plt.plot(points, density, 'k-', lw=2.0, alpha=0.8, label='KDE')

# Plot the "true" PDF
plt.plot(xx, yy, 'r--', alpha=0.4, lw=3.0, label='truth')

# Plot the standard, histogram density estimate
plt.hist(data, density=True, histtype='step', lw=2.0, alpha=0.5, label='hist')

plt.legend()
nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_8_0.png)

### resampling: constructing statistically similar values

Draw a new sample of data-points from the KDE PDF

```python
# Draw new samples from the KDE reconstructed PDF
samples = kale.resample(data)

# Plot new samples
plt.hist(samples, density=True, label='new samples', alpha=0.5, color='0.65', edgecolor='b')
# Plot the old samples
plt.hist(data, density=True, histtype='step', lw=2.0, alpha=0.5, color='r', label='input data')

# Plot the KDE reconstructed PDF
plt.plot(points, density, 'k-', lw=2.0, alpha=0.8, label='KDE')

plt.legend()
nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_11_0.png)

### Multivariate Distributions

```python
reload(kale.plot)

# Load some random-ish three-dimensional data
np.random.seed(9485)
data = kale.utils._random_data_3d_02(num=3e3)

# Construct a KDE
kde = kale.KDE(data)

# Construct new data by resampling from the KDE
resamp = kde.resample(size=1e3)

# Plot the data and distributions using the builtin `kalepy.corner` plot
corner, h1 = kale.corner(kde, quantiles=[0.5, 0.9])
h2 = corner.clean(resamp, quantiles=[0.5, 0.9], dist2d=dict(median=False), ls='--')

corner.legend([h1, h2], ['input data', 'new samples'])

nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_13_0.png)

```python
# Resample the data (default output is the same size as the input data)
samples = kde.resample()

# ---- Plot the input data compared to the resampled data ----

fig, axes = plt.subplots(figsize=[16, 4], ncols=kde.ndim)

for ii, ax in enumerate(axes):
# Calculate and plot PDF for `ii`th parameter (i.e. data dimension `ii`)
xx, yy = kde.density(params=ii, probability=True)
ax.plot(xx, yy, 'k--', label='KDE', lw=2.0, alpha=0.5)
# Draw histograms of original and newly resampled datasets
*_, h1 = ax.hist(data[ii], histtype='step', density=True, lw=2.0, label='input')
*_, h2 = ax.hist(samples[ii], histtype='step', density=True, lw=2.0, label='resample')
# Add 'kalepy.carpet' plots showing the data points themselves
kale.carpet(data[ii], ax=ax, color=h1[0].get_facecolor())
kale.carpet(samples[ii], ax=ax, color=h2[0].get_facecolor(), shift=ax.get_ylim()[0])

axes[0].legend()
nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_14_0.png)

# Fancy Usage

### Reflecting Boundaries

What if the distributions you're trying to capture have edges in them, like in a uniform distribution between two bounds? Here, the KDE chooses 'reflection' locations based on the extrema of the given data.

```python
# Uniform data (edges at -1 and +1)
NDATA = 1e3
np.random.seed(54321)
data = np.random.uniform(-1.0, 1.0, int(NDATA))

# Create a 'carpet' plot of the data
kale.carpet(data, label='data')
# Histogram the data
plt.hist(data, density=True, alpha=0.5, label='hist', color='0.65', edgecolor='k')

# ---- Standard KDE will undershoot just-inside the edges and overshoot outside edges
points, pdf_basic = kale.density(data, probability=True)
plt.plot(points, pdf_basic, 'r--', lw=3.0, alpha=0.5, label='KDE')

# ---- Reflecting KDE keeps probability within the given bounds
# setting `reflect=True` lets the KDE guess the edge locations based on the data extrema
points, pdf_reflect = kale.density(data, reflect=True, probability=True)
plt.plot(points, pdf_reflect, 'b-', lw=2.0, alpha=0.75, label='reflecting KDE')

plt.legend()
nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_18_0.png)

Explicit reflection locations can also be provided (in any number of dimensions).

```python
# Construct random data, add an artificial 'edge'
np.random.seed(5142)
edge = 1.0
data = np.random.lognormal(sigma=0.5, size=int(3e3))
data = data[data >= edge]

# Histogram the data, use fixed bin-positions
edges = np.linspace(edge, 4, 20)
plt.hist(data, bins=edges, density=True, alpha=0.5, label='data', color='0.65', edgecolor='k')

# Standard KDE with over & under estimates
points, pdf_basic = kale.density(data, probability=True)
plt.plot(points, pdf_basic, 'r--', lw=4.0, alpha=0.5, label='Basic KDE')

# Reflecting KDE setting the lower-boundary to the known value
# There is no upper-boundary when `None` is given.
points, pdf_basic = kale.density(data, reflect=[edge, None], probability=True)
plt.plot(points, pdf_basic, 'b-', lw=3.0, alpha=0.5, label='Reflecting KDE')

plt.gca().set_xlim(edge - 0.5, 3)
plt.legend()
nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_20_0.png)

### Multivariate Reflection

```python
# Load a predefined dataset that has boundaries at:
# x: 0.0 on the low-end
# y: 1.0 on the high-end
data = kale.utils._random_data_2d_03()

# Construct a KDE with the given reflection boundaries given explicitly
kde = kale.KDE(data, reflect=[[0, None], [None, 1]])

# Plot using default settings
kale.corner(kde)

nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_22_0.png)

### Specifying Bandwidths and Kernel Functions

```python
# Load predefined 'random' data
data = kale.utils._random_data_1d_02(num=100)
# Choose a uniform x-spacing for drawing PDFs
xx = np.linspace(-2, 8, 1000)

# ------ Choose the kernel-functions and bandwidths to test ------- #
kernels = ['parabola', 'gaussian', 'box'] #
bandwidths = [None, 0.9, 0.15] # `None` means let kalepy choose #
# ----------------------------------------------------------------- #

ylabels = ['Automatic', 'Course', 'Fine']
fig, axes = plt.subplots(figsize=[16, 10], ncols=len(kernels), nrows=len(bandwidths), sharex=True, sharey=True)
plt.subplots_adjust(hspace=0.2, wspace=0.05)
for (ii, jj), ax in np.ndenumerate(axes):

# ---- Construct KDE using particular kernel-function and bandwidth ---- #
kern = kernels[jj] #
bw = bandwidths[ii] #
kde = kale.KDE(data, kernel=kern, bandwidth=bw) #
# ---------------------------------------------------------------------- #

# If bandwidth was set to `None`, then the KDE will choose the 'optimal' value
if bw is None:
bw = kde.bandwidth[0, 0]

ax.set_title('{} (bw={:.3f})'.format(kern, bw))
if jj == 0:
ax.set_ylabel(ylabels[ii])

# plot the KDE
ax.plot(*kde.pdf(points=xx), color='r')
# plot histogram of the data (same for all panels)
ax.hist(data, bins='auto', color='b', alpha=0.2, density=True)
# plot carpet of the data (same for all panels)
kale.carpet(data, ax=ax, color='b')

ax.set(xlim=[-2, 5], ylim=[-0.2, 0.6])
nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_24_0.png)

## Resampling

### Using different data `weights`

```python
# Load some random data (and the 'true' PDF, for comparison)
data, truth = kale.utils._random_data_1d_01()

# ---- Resample the same data, using different weightings ---- #
resamp_uni = kale.resample(data, size=1000) #
resamp_sqr = kale.resample(data, weights=data**2, size=1000) #
resamp_inv = kale.resample(data, weights=data**-1, size=1000) #
# ------------------------------------------------------------ #

# ---- Plot different distributions ----

# Setup plotting parameters
kw = dict(density=True, histtype='step', lw=2.0, alpha=0.75, bins='auto')

xx, yy = truth
samples = [resamp_inv, resamp_uni, resamp_sqr]
yvals = [yy/xx, yy, yy*xx**2/10]
labels = [r'$\propto X^{-1}$', r'$\propto 1$', r'$\propto X^2$']

plt.figure(figsize=[10, 5])

for ii, (res, yy, lab) in enumerate(zip(samples, yvals, labels)):
hh, = plt.plot(xx, yy, ls='--', alpha=0.5, lw=2.0)
col = hh.get_color()
kale.carpet(res, color=col, shift=-0.1*ii)
plt.hist(res, color=col, label=lab, **kw)

plt.gca().set(xlim=[-0.5, 6.5])
# Add legend
plt.legend()
# display the figure if this is a notebook
nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_27_0.png)

### Resampling while 'keeping' certain parameters/dimensions

```python
# Construct covariant 2D dataset where the 0th parameter takes on discrete values
xx = np.random.randint(2, 7, 1000)
yy = np.random.normal(4, 2, xx.size) + xx**(3/2)
data = [xx, yy]

# 2D plotting settings: disable the 2D histogram & disable masking of dense scatter-points
dist2d = dict(hist=False, mask_dense=False)

# Draw a corner plot
kale.corner(data, dist2d=dist2d)

nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_29_0.png)

A standard KDE resampling will smooth out the discrete variables, creating a smooth(er) distribution. Using the `keep` parameter, we can choose to resample from the actual data values of that parameter instead of resampling with 'smoothing' based on the KDE.

```python
kde = kale.KDE(data)

# ---- Resample the data both normally, and 'keep'ing the 0th parameter values ---- #
resamp_stnd = kde.resample() #
resamp_keep = kde.resample(keep=0) #
# --------------------------------------------------------------------------------- #

corner = kale.Corner(2)
dist2d['median'] = False # disable median 'cross-hairs'
h1 = corner.plot(resamp_stnd, dist2d=dist2d)
h2 = corner.plot(resamp_keep, dist2d=dist2d)

corner.legend([h1, h2], ['Standard', "'keep'"])
nbshow()
```


![png](https://raw.githubusercontent.com/lzkelley/kalepy/dev/docs/media/demo_files/demo_31_0.png)

## Development & Contributions

Please visit the `github page `_ for issues or bug reports. Contributions and feedback are very welcome.

Contributors:
* Luke Zoltan Kelley (@lzkelley)
* Zachary Hafen (@zhafen)

JOSS Paper:
* Kexin Rong (@kexinrong)
* Arfon Smith (@arfon)
* Will Handley (@williamjameshandley)

## Attribution

A JOSS paper has been submitted. If you have found this package useful in your research, please add a reference to the code paper:

.. code-block:: tex

@article{kalepy,
author = {Luke Zoltan Kelley},
title = {kalepy: a python package for kernel density estimation and sampling},
journal = {The Journal of Open Source Software},
publisher = {The Open Journal},
}