Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lzrobots/LearningToCompare_ZSL

PyTorch code for CVPR 2018 paper: Learning to Compare: Relation Network for Few-Shot Learning (Zero-Shot Learning part)
https://github.com/lzrobots/LearningToCompare_ZSL

few-shot-learning zero-shot-learning

Last synced: 13 days ago
JSON representation

PyTorch code for CVPR 2018 paper: Learning to Compare: Relation Network for Few-Shot Learning (Zero-Shot Learning part)

Awesome Lists containing this project

README

        

# LearningToCompare_ZSL

PyTorch code for CVPR 2018 paper: [Learning to Compare: Relation Network for Few-Shot Learning](https://arxiv.org/abs/1711.06025) (Zero-Shot Learning part)

For Few-Shot Learning part, please visit [here](https://github.com/songrotek/LearningToCompare_FSL).

# Requirements

Python 2.7

Pytorch 0.3

# Data
Download data from [here](http://www.robots.ox.ac.uk/~lz/DEM_cvpr2017/data.zip) and unzip it `unzip data.zip`.

# Run
ZSL and GZSL performance evaluated under GBU setting [1]: ResNet feature, GBU split, averaged per class accuracy.

`AwA1_RN.py` will give you ZSL and GZSL performance on AwA1 with attribute under GBU setting [1].

`AwA2_RN.py` will give you ZSL and GZSL performance on AwA2 with attribute under GBU setting [1].

`CUB_RN.py` will give you ZSL and GZSL performance on CUB with attribute under GBU setting [1].

| Model | AwA1 T1 | u | s | H | CUB T1 | u | s | H |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| DAP [2] | 44.1 | 0.0 | 88.7 | 0.0 | 40.0 | 1.7 | 67.9 | 3.3 |
| CONSE [3] | 45.6 | 0.4 | 88.6 | 0.8 | 34.3 | 1.6 | **72.2** | 3.1 |
| SSE [4] | 60.1 | 7.0 | 80.5 | 12.9 | 43.9 | 8.5 | 46.9 | 14.4 |
| DEVISE [5] | 54.2 | 13.4 | 68.7 | 22.4 | 52.0 | 23.8 | 53.0 | 32.8 |
| SJE [6] | 65.6 | 11.3 | 74.6 | 19.6 | 53.9 | 23.5 | 59.2 | 33.6 |
| LATEM [7] | 55.1 | 7.3 | 71.7 | 13.3 | 49.3 | 15.2 | 57.3 | 24.0 |
| ESZSL [8] | 58.2 | 6.6 | 75.6 | 12.1 | 53.9 | 12.6 | 63.8 | 21.0 |
| ALE [9] | 59.9 | 16.8 | 76.1 | 27.5 | 54.9 | 23.7 | 62.8 | 34.4 |
| SYNC [10] | 54.0 | 8.9 | 87.3 | 16.2 | 55.6 | 11.5 | 70.9 | 19.8 |
| SAE [11] | 53.0 | 1.8 | 77.1 | 3.5 | 33.3 | 7.8 | 54.0 | 13.6 |
| [DEM](https://github.com/lzrobots/DeepEmbeddingModel_ZSL) [12] | **68.4** | **32.8** | 84.7 | **47.3** | 51.7 | 19.6 | 57.9 | 29.2 |
| **RN (OURS)** |68.2 | 31.4 | **91.3** | 46.7 | **55.6** | **38.1** | 61.4 | **47.0** |

| Model | AwA2 T1 | u | s | H |
|------------|---------|---------|---------|---------|
| DAP [2] | 46.1 | 0.0 | 84.7 | 0.0 |
| CONSE [3] | 44.5 | 0.5 | 90.6| 1.0 |
| SSE [4] | 61.0 | 8.1 | 82.5 | 14.8 |
| DEVISE [5] | 59.7 | 17.1 | 74.7 | 27.8 |
| SJE [6] | 61.9 | 8.0 | 73.9 | 14.4 |
| LATEM [7] | 55.8 | 11.5 | 77.3 | 20.0 |
| ESZSL [8] | 58.6 | 5.9 | 77.8 | 11.0 |
| ALE [9] | 62.5 | 14.0 | 81.8 | 23.9 |
| SYNC [10] | 46.6 | 10.0 | 90.5 | 18.0 |
| SAE [11] | 54.1 | 1.1 | 82.2 | 2.2 |
| [DEM](https://github.com/lzrobots/DeepEmbeddingModel_ZSL) [12] | **67.1** | **30.5** | 86.4 | 45.1|
| **RN (OURS)** |64.2 | 30.0 | **93.4** | **45.3** |

## Citing

If you use this code in your research, please use the following BibTeX entry.

```
@inproceedings{sung2018learning,
title={Learning to Compare: Relation Network for Few-Shot Learning},
author={Sung, Flood and Yang, Yongxin and Zhang, Li and Xiang, Tao and Torr, Philip HS and Hospedales, Timothy M},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2018}
}
```

## References

- [1] [Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly](https://arxiv.org/abs/1707.00600).
Yongqin Xian, Christoph H. Lampert, Bernt Schiele, Zeynep Akata.
arXiv, 2017.
- [2] [Attribute-Based Classification forZero-Shot Visual Object Categorization](https://cvml.ist.ac.at/papers/lampert-pami2013.pdf).
Christoph H. Lampert, Hannes Nickisch and Stefan Harmeling.
PAMI, 2014.
- [3] [Zero-Shot Learning by Convex Combination of Semantic Embeddings](https://arxiv.org/abs/1312.5650).
Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens, Andrea Frome, Greg S. Corrado, Jeffrey Dean.
arXiv, 2013.
- [4] [Zero-Shot Learning via Semantic Similarity Embedding](https://arxiv.org/abs/1509.04767).
Ziming Zhang, Venkatesh Saligrama.
ICCV, 2015.
- [5] [DeViSE: A Deep Visual-Semantic Embedding Model](http://papers.nips.cc/paper/5204-devise-a-deep-visual-semantic-embedding-model.pdf).
Andrea Frome*, Greg S. Corrado*, Jonathon Shlens*, Samy BengioJeffrey Dean, Marc’Aurelio Ranzato, Tomas Mikolov.
NIPS, 2013.
- [6] [Evaluation of Output Embeddings for Fine-Grained Image Classification](https://arxiv.org/abs/1409.8403).
Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, Bernt Schiele.
CVPR, 2015.
- [7] [Latent Embeddings for Zero-shot Classification](https://arxiv.org/abs/1603.08895).
Yongqin Xian, Zeynep Akata, Gaurav Sharma, Quynh Nguyen, Matthias Hein, Bernt Schiele
CVPR, 2016.
- [8] [An embarrassingly simple approach to zero-shot learning](http://proceedings.mlr.press/v37/romera-paredes15.pdf).
Bernardino Romera-Paredes, Philip H. S. Torr.
ICML, 2015.
- [9] [Label-Embedding for Image Classification](https://arxiv.org/abs/1503.08677).
Zeynep Akata, Florent Perronnin, Zaid Harchaoui, Cordelia Schmid.
PAMI, 2016.
- [10] [Synthesized Classifiers for Zero-Shot Learning](https://arxiv.org/abs/1603.00550).
Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, Fei Sha.
CVPR, 2016.
- [11] [Semantic Autoencoder for Zero-Shot Learning](https://arxiv.org/abs/1704.08345).
Elyor Kodirov, Tao Xiang, Shaogang Gong.
CVPR, 2017.
- [12] [Learning a Deep Embedding Model for Zero-Shot Learning](https://arxiv.org/abs/1611.05088).
Li Zhang, Tao Xiang, Shaogang Gong.
CVPR, 2017.