Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/m-pektas/pysimpler

This package simplifies the measuring duration of python functions.
https://github.com/m-pektas/pysimpler

cache decorators python reporting software-engineering timer

Last synced: about 5 hours ago
JSON representation

This package simplifies the measuring duration of python functions.

Awesome Lists containing this project

README

        

# pysimpler

![version](https://img.shields.io/badge/version-0.0.7-blue)

This package simplifies the fundamental software engineering practices such as bottleneck analysis, exception handling, logging etc.

## Installation

```
pip install pysimpler
```

## Environment Variables

You have to set PYSIMPLER environment variable as 1 to activate pysimpler. If you want to deactivate it, you should set as 0.

```
#activate
export PYSIMPLER=1

#deactivate
export PYSIMPLER=0
```

## Report

You can add the following command at the end of your code for reporting.

```python
pysimpler.reporter.report()
```

If you want to set specific values for reporting metrics, you can use following lines. Default values are TIME_UNITS.SECONDS and 5 digits.

```python
import pysimpler
pysimpler.reporter.set_time_unit(pysimpler.TIME_UNITS.MILLISECONDS)
pysimpler.reporter.set_digits(10)
```

## Features

### 1. Time Logger

This feature aims to log duration of the execution time of method. We use **timer** keyword for using this feature. It help you analysing your bottlenecks in function level.

**Example:**

```python
import pysimpler

@pysimpler.timer.time()
def counter(count):
x = 1
for i in range(count):
y = x*i

if __name__ == '__main__':

print("Process 1")
result = counter(10)
print("Process 3")

pysimpler.reporter.report()

# output
# ------------------------------
# Process 1
# 2023-12-25T11:55:38.474173+0300 | INFO | File: app.py | Function : counter | Duration : 0.0005151670000032027 sec
# Process 3
```

### 2. Cache Cleaner

```python
import pysimpler
import gc

@pysimpler.cache.clear()
def memory(count):
mem = []
for i in range(count):
mem.append("data")

if __name__ == '__main__':
# print(gc.get_count()) lines are only for printing of the memory state.
# You can remove it.

print("Process 1")
print("Process 2")
print(gc.get_count())
result = memory(1000)
print(gc.get_count())
print("Process 4")

# output
#------------------------------
# Process 1
# Process 2
# (351, 10, 1)
# (0, 0, 0)
# Process 4
```

```python
import pysimpler
import gc

@pysimpler.cache.clear(pysimpler.MLFrameworks.PYTORCH)
def memory_pytorch(device = "cuda"):
print("=> memory_pytorch")
var = torch.ones(1,3,1024,1024)
if torch.cuda.is_available():
var = var.to(device)

if __name__ == '__main__':
print("Process 1")
print("Process 2")
result = memory_pytorch()
print("Process 4")

# output
# ------------------------------
# Process 1
# Process 2
# => memory_pytorch
# Process 4
```

```