Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/m-romanenko/dog-project
Dog breed classifier
https://github.com/m-romanenko/dog-project
cnn keras python transfer-learning xception
Last synced: about 1 month ago
JSON representation
Dog breed classifier
- Host: GitHub
- URL: https://github.com/m-romanenko/dog-project
- Owner: m-romanenko
- License: mit
- Created: 2018-11-01T10:31:55.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-01-12T14:47:07.000Z (about 6 years ago)
- Last Synced: 2024-11-16T09:49:41.263Z (3 months ago)
- Topics: cnn, keras, python, transfer-learning, xception
- Language: Jupyter Notebook
- Homepage:
- Size: 55.6 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
- Codeowners: CODEOWNERS
Awesome Lists containing this project
README
[//]: # (Image References)
[image1]: ./my_images/example_brittany.PNG "Example Output: Brittany"
[image2]: ./my_images/example_cat.PNG "Example Output: Cat"## Dog Classification Project
Given an image of a dog, this algorithm will identify an estimate of the canine’s breed. If supplied an image of a human, the code will identify the resembling dog breed.
![Sample Output: Brittany][image1]
If supplied an image of something other than a dog or a human, the algorithm will know that, too:
![Sample Output: Cat][image2]
### Instructions
1. The dog dataset can be downloaded [here](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/dogImages.zip). You should then extract it to `path/to/dog-project/dogImages`.
2. The human dataset can be downloaded [here](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/lfw.zip). You should then extract it at location `path/to/dog-project/lfw`.
3. Finally, download the [VGG-16 bottleneck features](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/DogVGG16Data.npz) for the dog dataset and place it to `path/to/dog-project/bottleneck_features`.
4. You can now run the Jupyter notebook [dog_app.ipynb](./dog_app.ipynb) and train the model!