An open API service indexing awesome lists of open source software.

https://github.com/machine-learning-tokyo/seq2seq-workshop

Seq2Seq workshop materials
https://github.com/machine-learning-tokyo/seq2seq-workshop

deep-learning machine-learning pytorch seq2seq workshop-materials

Last synced: 5 months ago
JSON representation

Seq2Seq workshop materials

Awesome Lists containing this project

README

          

# Seq2Seq-Workshop
Seq2Seq workshop materials

Presentation slides:

[NLP Basics](https://docs.google.com/presentation/d/1d66kraQablpfIPWLFo9_R_f2HB4_5uW8z0bvvUhsH_U/edit#slide=id.g54b76756f0_0_5601)

[Intro to Sequence to Sequence Learning](https://docs.google.com/presentation/d/1Zz1VzDHhRiF-QGyn_v7fHTSyoEOK7CH4nq2YpyZpVaY/edit?usp=sharing)






# Dependencies

* Python 3.6
* Pytorch 0.4.1
* MeCab with neologd dictionary
- [Instructions for Mac](https://qiita.com/taroc/items/b9afd914432da08dafc8)
- [Instructions for Ubuntu](https://qiita.com/ekzemplaro/items/c98c7f6698f130b55d53)

# Installation

1. Create a conda environment:
```
conda env create -n seq2seq python=3.6
```
2. Install dependencies
```
pip install spacy
pip install mecab-python3

```
3. Install Spacy `en` model:
```
python -m spacy download en
```
4. Install Pytorch `0.4.1`:
```
pip install torch==0.4.1
```

# Data

- English-Japanese Translation Corpus: (ftp://ftp.monash.edu/pub/nihongo/examples.utf.gz)
- [COCO Image Captioning Dataset](http://cocodataset.org/#download) (2014 train/val set)