https://github.com/machinelearningprodigy/diabetes-analysis
A simple Diabetes Prediction App built using Streamlit and Machine Learning. This app predicts diabetes risk based on health parameters. π₯π¬
https://github.com/machinelearningprodigy/diabetes-analysis
pandas pickle pip python3 streamlit xgboost
Last synced: 20 days ago
JSON representation
A simple Diabetes Prediction App built using Streamlit and Machine Learning. This app predicts diabetes risk based on health parameters. π₯π¬
- Host: GitHub
- URL: https://github.com/machinelearningprodigy/diabetes-analysis
- Owner: machinelearningprodigy
- Created: 2024-01-29T14:11:36.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2025-02-27T18:57:48.000Z (2 months ago)
- Last Synced: 2025-03-27T06:32:12.772Z (about 1 month ago)
- Topics: pandas, pickle, pip, python3, streamlit, xgboost
- Language: Python
- Homepage: https://diabetes-detection-system.streamlit.app/
- Size: 90.8 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# π©Έ Diabetes Detection App
A simple **Diabetes Prediction App** built using **Streamlit** and **Machine Learning**. This app predicts diabetes risk based on health parameters. π₯π¬
## β¨ Features
- **User-friendly UI** with sliders & dropdowns π±οΈ
- **Machine Learning Model** for accurate predictions π€
- **Color-coded results**: No Diabetes π’ | Diabetes Present π΄
- **Interactive user inputs** for better experience π―## π οΈ Technologies Used
- **Python** π
- **Streamlit** π
- **Pandas** π
- **XGBoost** β‘
- **Pickle (Model Loading)** π¦## π How to Run
### 1οΈβ£ Install Dependencies
```sh
pip install streamlit pandas xgboost pickle-mixin
```### 2οΈβ£ Run the App
```sh
streamlit run app.py
```## π Input Features
- **Gender** π»
- **Age** πΆπ΄
- **Hypertension** β€οΈ
- **Heart Disease** π
- **Smoking History** π¬
- **BMI (Body Mass Index)** βοΈ
- **HbA1c Level (Hemoglobin A1c)** π©Έ
- **Blood Glucose Level** π¬## π― Prediction
The model predicts diabetes risk based on user inputs and displays the result with a **color-coded message**:
- π’ **No Diabetes**
- π΄ **Diabetes Present**## π Future Enhancements
- β Improve model performance
- β Add visualizations π
- β Enhance UI/UX## π¨βπ» Developed By
[Machine Learning Prodigy](https://github.com/machinelearningprodigy)## π License
This project is open-source under the **MIT License**.