Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/machphy/fb_sentiment_analysis
https://github.com/machphy/fb_sentiment_analysis
Last synced: 2 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/machphy/fb_sentiment_analysis
- Owner: machphy
- Created: 2024-07-09T04:29:43.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-07-09T04:54:51.000Z (4 months ago)
- Last Synced: 2024-07-09T07:21:33.454Z (4 months ago)
- Language: Python
- Size: 1.35 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
![image](https://github.com/machphy/fb_sentiment_analysis/assets/115711628/7673e492-a106-44eb-b158-27584eb53140)# Facebook Sentiment Analysis
This project performs sentiment analysis on Facebook posts using Python. The analysis pipeline involves loading data from a CSV file, preprocessing the data, performing sentiment analysis, and visualizing the results.
## Project Structure
fbsa/
│
├── data/
│ └── fb_scrapped_data.csv # Your CSV dataset file
│
├── scripts/
│ ├── load_data.py # Loads the dataset from CSV
│ ├── preprocess_data.py # Preprocesses the dataset
│ ├── sentiment_analysis.py # Performs sentiment analysis
│ └── visualize_results.py # Visualizes the results
│
├── main.py # Main script to run the analysis pipeline
└── README.md # Project README file## Project Details
This project is designed to analyze the sentiment of Facebook posts. Sentiment analysis is a natural language processing (NLP) technique used to determine the emotional tone behind a body of text. It is commonly used to understand opinions, attitudes, and emotions expressed in online reviews, social media, and other forms of text.
### Key Features
- **Data Loading**: Loads Facebook post data from a CSV file.
- **Data Preprocessing**: Cleans and preprocesses the data to make it suitable for analysis.
- **Sentiment Analysis**: Analyzes the sentiment of each Facebook post using a sentiment analysis model.
- **Visualization**: Visualizes the distribution of sentiment scores using a histogram.### Technologies Used
- **Python**: The programming language used for the entire project.
- **Pandas**: A data manipulation and analysis library used to handle the dataset.
- **Matplotlib**: A plotting library used to visualize the results.Scripts Overview
main.py
The main entry point of the project. It orchestrates data loading, preprocessing, sentiment analysis, and result visualization.load_data.py
Defines a function to load the dataset from a CSV file.preprocess_data.py
Defines functions for preprocessing the dataset.sentiment_analysis.py
Defines functions for performing sentiment analysis.visualize_results.py
Defines functions for visualizing the results.### result
1. **Resulting Graph Image**
Sentiment analysis sample: