Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/madsjulia/biguq.jl

Bayesian Information Gap Decision Theory
https://github.com/madsjulia/biguq.jl

bayesian bayesian-data-analysis data-driven data-science decision-analysis decision-making decision-model decision-support decision-theory experimental-design high-performance-computing information-gap information-theory julia mads model-analysis model-driven predictive-analysis uncertainty-quantification

Last synced: 7 days ago
JSON representation

Bayesian Information Gap Decision Theory

Awesome Lists containing this project

README

        

# BIGUQ

BIGUQ performs Bayesian Information Gap Decision Theory (BIG-DT) analysis for Uncertainty Quantification, Experimental Design, and Decision Analysis.
BIGUQ is a module of [MADS](http://madsjulia.github.io/Mads.jl).

Example
-------

```julia
import Mads

problemdir = Mads.getmadsdir()
md = Mads.loadmadsfile(joinpath(problemdir, "source_termination.mads"))
nsample = 1000
bigdtresults = Mads.dobigdt(md, nsample; maxHorizon=0.8, numlikelihoods=5)
Mads.plotrobustnesscurves(md, bigdtresults; filename=joinpath(problemdir, "source_termination-robustness-$nsample"))
Mads.plotrobustnesscurves(md, bigdtresults; filename=joinpath(problemdir, "source_termination-robustness-zoom-$nsample"), maxhoriz=0.4, maxprob=0.1)
```

MADS
====

[MADS](http://madsjulia.github.io/Mads.jl) (Model Analysis & Decision Support) is an integrated open-source high-performance computational (HPC) framework in [Julia](http://julialang.org).
MADS can execute a wide range of data- and model-based analyses:

* Sensitivity Analysis
* Parameter Estimation
* Model Inversion and Calibration
* Uncertainty Quantification
* Model Selection and Model Averaging
* Model Reduction and Surrogate Modeling
* Machine Learning and Blind Source Separation
* Risk Assessment
* Decision Analysis and Support

MADS has been tested to perform HPC simulations of a wide range of multi-processor clusters and parallel environments (Moab, Slurm, etc.).
MADS utilizes adaptive rules and techniques which allows the analyses to be performed with a minimum user input.
The code provides a series of alternative algorithms to execute each type of data- and model-based analysis.

Documentation
=============

All the available MADS modules and functions are described at [madsjulia.github.io](http://madsjulia.github.io/Mads.jl)

Installation
============

```julia
Pkg.add("Mads")
```

Installation behind a firewall
------------------------------

Julia uses git for package management.
To install Julia packages behind a firewall, add the following lines in the `.gitconfig` file in your home directory:

```git
[url "https://"]
insteadOf = git://
```

or execute:

```bash
git config --global url."https://".insteadOf git://
```

Set proxies:

```bash
export ftp_proxy=http://proxyout.:8080
export rsync_proxy=http://proxyout.:8080
export http_proxy=http://proxyout.:8080
export https_proxy=http://proxyout.:8080
export no_proxy=.
```

For example, if you are doing this at LANL, you will need to execute the
following lines in your bash command-line environment:

```bash
export ftp_proxy=http://proxyout.lanl.gov:8080
export rsync_proxy=http://proxyout.lanl.gov:8080
export http_proxy=http://proxyout.lanl.gov:8080
export https_proxy=http://proxyout.lanl.gov:8080
export no_proxy=.lanl.gov
```

MADS examples
=============

In Julia REPL, do the following commands:

```julia
import Mads
```

To explore getting-started instructions, execute:

```julia
Mads.help()
```

There are various examples located in the `examples` directory of the `Mads` repository.

For example, execute

```julia
include(Mads.madsdir * "/../examples/contamination/contamination.jl")
```

to perform various example analyses related to groundwater contaminant transport, or execute

```julia
include(Mads.madsdir * "/../examples/bigdt/bigdt.jl")
```

to perform Bayesian Information Gap Decision Theory (BIG-DT) analysis.

Developers
==========

* [Velimir (monty) Vesselinov](https://montyv.github.io) [(publications)](http://scholar.google.com/citations?user=sIFHVvwAAAAJ)
* [Daniel O'Malley](http://www.lanl.gov/expertise/profiles/view/daniel-o'malley) [(publications)](http://scholar.google.com/citations?user=rPzCVjEAAAAJ)

Projects:
---------

* [MADS](https://github.com/madsjulia)
* [SmartTensors](https://github.com/SmartTensors)
* [SmartML](https://github.com/SmartTensors/SmartML.jl)

Publications, Presentations
--------------------------

* [mads.gitlab.io](http://mads.gitlab.io)
* [madsjulia.github.io](https://madsjulia.github.io)
* [SmartTensors](https://SmartTensors.github.io)
* [SmartTensors.com](https://SmartTensors.com)
* [monty.gitlab.io](http://monty.gitlab.io)
* [montyv.github.io](https://montyv.github.io)