Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/maenzhier/GRecX
An Efficient and Unified Benchmark for GNN-based Recommendation.
https://github.com/maenzhier/GRecX
Last synced: about 2 months ago
JSON representation
An Efficient and Unified Benchmark for GNN-based Recommendation.
- Host: GitHub
- URL: https://github.com/maenzhier/GRecX
- Owner: maenzhier
- License: gpl-3.0
- Created: 2021-10-29T13:00:43.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2023-05-11T09:46:35.000Z (over 1 year ago)
- Last Synced: 2024-09-28T03:53:55.321Z (4 months ago)
- Language: Python
- Homepage:
- Size: 337 KB
- Stars: 79
- Watchers: 4
- Forks: 11
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - maenzhier/GRecX
README
# GRecX
An Efficient and Unified Benchmark for GNN-based Recommendation.## Homepage and Documentation
+ Homepage: [https://github.com/maenzhier/GRecX](https://github.com/maenzhier/GRecX)
+ Paper: [GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation](https://arxiv.org/pdf/2111.10342.pdf)## Example Benchmark: Performance on Yelp and Gowalla with BPR Loss
Performance on Yelp with BPR Loss:
Performance on Gowalla with BPR Loss:
## Demo
We recommend you get started with some demos.
+ [Matrix Factorization (MF)](demo/demo_mf.py)
+ [MLP + MF](demo/demo_mf_fc.py)
+ [NGCF](demo/demo_ngcf.py)
+ [LightGCN](demo/demo_light_gcn.py)
+ [UltraGCN](demo/demo_ultra_gcn.py)## Preliminary Comparison
### LightGCN-Yelp dataset (featureless)
[comment]: <> (| Algo | nDCG@20 | recall@20 | precision@20 |)
[comment]: <> (| --- | --- | --- | --- | )
[comment]: <> (| NGCF | 0.04118 | 0.02302 | 0.05034 |)
[comment]: <> (| lightGCN| 0.05260 | 0.06397 | 0.02876 |)
[comment]: <> (| UltraGCN (oc) | 0.03408 | 0.04154 | 0.01928 |)
[comment]: <> (| our-UltraGCN | 0.03540 | --- | --- |)
[comment]: <> (Note that: oc means orignal code with negative_num=1 and negative_weight=1. )
* BCE-loss
[comment]: <> (| Algo | nDCG@5 | nDCG@10 | nDCG@15 | nDCG@20 |)
[comment]: <> (| --- | --- | --- | --- | --- |)
[comment]: <> (| MF| 0.031168 | 0.033510 | 0.037817 | 0.042061 (epoch:1300) |)
[comment]: <> (| our-lightGCN| 0.034872 | 0.037350 | 0.041520 | 0.045872 (epoch:1300) |)
| Algo | Precision@10 | Precision@20 | Recall@10 | Recall@20 | nDCG@10 | nDCG@20 |
| --- | --- | --- | --- | --- | --- | --- |
| MF | 0.029597 | 0.025495 | 0.032733 | 0.056086 | 0.037332 | 0.045805 |
| NGCF | 0.024713 | 0.021893 | 0.028251 | 0.049611 | 0.031357 | 0.039549 |
| LightGCN | --- | --- | --- | --- | 0.037350 | 0.045872 |
| UltraGCN-single | 0.030652 | 0.026790 | 0.033913 | 0.058886 | 0.038576 | 0.047766 |
| UltraGCN | 0.03553 | 0.030346 | 0.039526 | 0.067028 | 0.045365 | 0.055376 |* BPR-loss
[comment]: <> (| Algo | nDCG@5 | nDCG@10 | nDCG@15 | nDCG@20 |)
[comment]: <> (| --- | --- | --- | --- | --- |)
[comment]: <> (| MF| 0.034672 | 0.037321 | 0.041864 | 0.046112 |)
[comment]: <> (| our-lightGCN| 0.040223 | 0.042649 | 0.047568 | 0.052569 (epoch:760) |)
| Algo | Precision@10 | Precision@20 | Recall@10 | Recall@20 | nDCG@10 | nDCG@20 |
| --- | --- | --- | --- | --- | --- | --- |
| MF | 0.031489 | 0.027303 | 0.034733 | 0.060333 | 0.040103 | 0.049406 |
| NGCF | 0.030375 | 0.026699 | 0.034502 | 0.059984 | 0.038732 | 0.048351 |
| LightGCN | 0.033544 | 0.028996 | 0.037277 | 0.064128 | 0.042907 | 0.052667 |
| UltraGCN-single | --- | --- | --- | --- | --- | --- |
| UltraGCN | --- | --- | --- | --- | --- | --- |Note that "UltraGCN-single" uses loss with one negative sample and one negatvie loss weight
[comment]: <> (***)
[comment]: <> (#### LightGCN-Gowalla dataset (featureless))
[comment]: <> (| Algo | nDCG@20 | recall@20 | precision@20 |)
[comment]: <> (| --- | --- | --- | --- | )
[comment]: <> (| NGCF | 0.11804 | 0.14375 | 0.04404 |)
[comment]: <> (| lightGCN| 0.15271 | 0.17801 | 0.05474 |)
[comment]: <> (| UltraGCN (oc) | 0.10846 | 0.12202 | 0.03826 |)
[comment]: <> (Note that: oc means orignal code with negative_num=1 and negative_weight=1.)
[comment]: <> (* BCE-loss)
[comment]: <> (| Algo | nDCG@5 | nDCG@10 | nDCG@15 | nDCG@20 |)
[comment]: <> (| --- | --- | --- | --- | --- |)
[comment]: <> (| MF| --- | --- | --- | 0.1298 |)
[comment]: <> (| our-lightGCN| --- | --- | --- | 0.1300 |)
[comment]: <> (* BPR-loss)
[comment]: <> (| Algo | nDCG@5 | nDCG@10 | nDCG@15 | nDCG@20 |)
[comment]: <> (| --- | --- | --- | --- | --- |)
[comment]: <> (| MF| 0.116182 | 0.117339 | 0.123564 | 0.1400 |)
[comment]: <> (| our-lightGCN| --- | --- | --- | 0.1485 |)
[comment]: <> (#### LightGCN-Amazon-book dataset (featureless))
## Cite
If you use GRecX in a scientific publication, we would appreciate citations to the following paper:
```html
@misc{cai2021grecx,
title={GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation},
author={Desheng Cai and Jun Hu and Shengsheng Qian and Quan Fang and Quan Zhao and Changsheng Xu},
year={2021},
eprint={2111.10342},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```