https://github.com/mahaksinghal/data_visualization_toolkit
Data Visualization Tookit
https://github.com/mahaksinghal/data_visualization_toolkit
bootstrap5 csvfile datatables-library django html-css-javascript htmx htmx-django jquery pandas plotly plotly-express plotly-io
Last synced: 26 days ago
JSON representation
Data Visualization Tookit
- Host: GitHub
- URL: https://github.com/mahaksinghal/data_visualization_toolkit
- Owner: mahaksinghal
- Created: 2024-10-04T06:51:21.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-10-21T14:07:20.000Z (over 1 year ago)
- Last Synced: 2025-02-09T04:17:24.199Z (12 months ago)
- Topics: bootstrap5, csvfile, datatables-library, django, html-css-javascript, htmx, htmx-django, jquery, pandas, plotly, plotly-express, plotly-io
- Language: Python
- Homepage:
- Size: 3.6 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Data Visualization Toolkit
This project is a Django-based web application that allows users to upload CSV files using [HTMX], clean and process the data using [Pandas], view previously uploaded files, display CSV data in an interactive table using [DataTables] Javascript library and visualize data using [Plotly] library.
## Features
- **CSV Upload:** Users can upload CSV files to the application.
- **File Management:** View a list of previously uploaded files and select a file to display, download or visualize.
- **Interactive Data Tables:** Display the CSV data using [DataTables] Javascript library for features like sorting, searching, and pagination.
- **Data Cleaning and Preprocessing:** The uploaded CSV file is cleaned and preprocessed using [Pandas], which handles missing data, duplicates, and formatting.
- **Data Visualization:** Generate and display interactive graphs using [Plotly] based on the data in the CSV files.
- **Graph Selection:** Users can select specific types of graphs to visualize the data and view the selected graph directly within the application.
## Technologies Used
- **Frontend:** HTML, CSS, JavaScript, JQuery, Bootstrap, HTMX
- **Backend:** Django
- **Interactive Tables:** DataTables (Javascript Library)
- **Data Pre-Processing:** Pandas
- **Data Visualization:** Plotly
- **Database:** SQLite (Default For Django)
## Screenshots





