https://github.com/mainakverse/ml-algorithms-starter
List of machine learning algorithms that are needed to start with ML projects and lay a foundation into data science
https://github.com/mainakverse/ml-algorithms-starter
data-analysis data-science jupyter-notebooks machine-learning-algorithms practice
Last synced: 10 months ago
JSON representation
List of machine learning algorithms that are needed to start with ML projects and lay a foundation into data science
- Host: GitHub
- URL: https://github.com/mainakverse/ml-algorithms-starter
- Owner: MainakVerse
- License: mit
- Created: 2025-02-27T13:24:12.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2025-02-27T13:26:37.000Z (11 months ago)
- Last Synced: 2025-02-27T19:09:57.504Z (11 months ago)
- Topics: data-analysis, data-science, jupyter-notebooks, machine-learning-algorithms, practice
- Language: Jupyter Notebook
- Homepage:
- Size: 764 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ML-Algorithms
List of some top machine learning algorithms. Just give a dive and explore the world of ML.
## A. Regressions
### 1. Simple Linear Regression
### 2. Multivariate Regression
### 3. Polynomial Regression
### 4. Support Vector Regression
## B. Classification
### 5. Decision tree classifier
### 6. Random forest classifier
### 7. Naive-Bayes classifier
### 8. K-Nearest Neighbour
### 9. Logistic regression classifier
### 10. Support Vector Machine
## C. Clustering
### 11. K-Mean Clustering
### 12. Heirirchical Clustering
### 13. Spectral Clustering
### 14. Agglomerative Clustering
## D. Reinforcement Learning
### 15. Thompson Sampling
### 16. Upper Confidence Bound
### 17. Dimensionality Reduction (PCA)
## E. Association Rule Learning
### 18. Apriori
### 19. Eclat
### 20. Cross Validation
## Made with 💛 by Mainak Chaudhuri.