Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mainanick/kerasplugins
kerasplugins: Boost Keras 💻
https://github.com/mainanick/kerasplugins
keras machine-learning python tensorflow
Last synced: 3 months ago
JSON representation
kerasplugins: Boost Keras 💻
- Host: GitHub
- URL: https://github.com/mainanick/kerasplugins
- Owner: mainanick
- License: mit
- Created: 2017-10-31T21:52:27.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-02-21T15:21:18.000Z (almost 7 years ago)
- Last Synced: 2024-10-01T16:08:18.185Z (3 months ago)
- Topics: keras, machine-learning, python, tensorflow
- Language: Python
- Homepage:
- Size: 27.3 KB
- Stars: 6
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
README
# kerasplugins 🤓
[![PyPI](https://img.shields.io/pypi/v/kerasplugins.svg)]()
[![PyPI](https://img.shields.io/pypi/l/kerasplugins.svg)]()##### Installation
```
pip install kerasplugins
```## Callbacks
### Notification Callback 📮 💬
Get notified as your Keras neural network models trains remotelySend log messages to your telegram and slack channels. *more coming soon*
Notify levels available:
1) on_train_begin,
2) on_train_end,
3) on_batch_begin,
4) on_batch_end,
5) on_epoch_begin,
6) on_epoch_end```python
from kerasplugins import callbacks#Notify can either be a list, dict or set
notify = {
'on_batch_end', # sends BATCH END: Loss 0.50 Accuracy: 0.75
'on_epoch_end' # sends EPOCH END: Loss 0.43 Accuracy: 0.81
}# msg is the initial message
msg = "Predicting Bitcoin Price"telegram = callbacks.TelegramNotify(, , msg=msg, notify=notify)
# channel is "#general" by default
slack = callbacks.SlackNotify(, , msg=msg, notify=notify)webhook = callbacks.WebhookNotify('https://example.com/ml')
# Optionals:
#Headers default to "application/json"
headers = {'Content-Type': 'text/plain'}# Added to every payload sent to the webhook
data = {"auth_token":"cccxxxvvvbbbnnnmmmaaasss"}webhook = callbacks.WebhookNotify('https://example.com/ml', data=data, headers=headers)
model.fit(X_train, Y_train, validation_data=[X_test, Y_test], batch_size=256, epochs=10,
callbacks=[telegram, slack, webhook])
```## Coming Soon
1) Ability to stop training remotely