Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/makoczoro/credit-default-risk-analysis-eda

This repository contains the detailed EDA Analysis of Home Credit Group Dataset. The analysis aims to find demographic and financial factors associated with higher or lower default risks, providing actionable insights for risk mitigation and improved lending practices
https://github.com/makoczoro/credit-default-risk-analysis-eda

bivariate-analysis correlation-analysis data-preprocessing exploratory-data-analysis exploratory-data-visualizations matplotlib numpy pandas seaborn univariate-analysis

Last synced: 27 days ago
JSON representation

This repository contains the detailed EDA Analysis of Home Credit Group Dataset. The analysis aims to find demographic and financial factors associated with higher or lower default risks, providing actionable insights for risk mitigation and improved lending practices

Awesome Lists containing this project

README

        

# Credit Default Risk Analysis EDA 📊

![EDA Home Credit Group](https://via.placeholder.com/800x400)

Welcome to the **Credit-Default-Risk-Analysis-EDA** repository! Here, you will find a detailed Exploratory Data Analysis (EDA) of the Home Credit Group Dataset. This analysis aims to uncover demographic and financial factors associated with higher or lower default risks, providing valuable insights for risk mitigation and enhancing lending practices.

## Overview ℹī¸

In the modern world, assessing credit risks is a crucial aspect of financial decision-making. Understanding the factors that contribute to credit default can help financial institutions make informed decisions regarding lending practices. The Home Credit Group Dataset provides a rich source of data that enables us to explore these factors through statistical analysis and visualization.

## Repository Contents 📁

### Data Preprocessing 🛠ī¸
- Various techniques used to prepare the data for analysis and ensure its quality.

### Univariate Analysis 🔍
- Statistical analysis of individual variables within the dataset to understand their distribution and characteristics.

### Bivariate Analysis 📈
- Examination of relationships between pairs of variables to uncover potential correlations and insights.

### Correlation Analysis 🔗
- Assessment of the strength and direction of relationships between variables to identify potential predictors of credit default.

### Exploratory Data Visualizations 📊
- Visual representations of the data to aid in understanding patterns, trends, and anomalies.

## Tools and Libraries Used 🛠ī¸

- Matplotlib 📊
- NumPy 🧮
- Pandas đŸŧ
- Seaborn 🌊

## How to Use the Analysis 🚀

To explore the detailed EDA of the Home Credit Group Dataset, you can download the analysis files from the following link:

[![Download Analysis](https://img.shields.io/badge/Download-Analysis-blue.svg)](https://github.com/user-attachments/files/18426772/Application.zip)

Please note that the link provided needs to be launched to access the analysis files. If you encounter any issues with the link, kindly check the "Releases" section of this repository for alternative download options.

## Get in Touch 📧

If you have any questions, feedback, or suggestions regarding the Credit Default Risk Analysis EDA, feel free to reach out to us. Your insights and comments are valuable as we strive to enhance our understanding of credit default risks.

Let's dive into the world of credit risk analysis together and uncover actionable insights to improve lending practices! 🌟

Happy analyzing! 🚀

🔗 [Check out our analysis here!](https://github.com/user-attachments/files/18426772/Application.zip) 🔗