https://github.com/manavsehgal/strands-analyst
Analyst AI agentic system powered by Strands Agents
https://github.com/manavsehgal/strands-analyst
Last synced: 12 days ago
JSON representation
Analyst AI agentic system powered by Strands Agents
- Host: GitHub
- URL: https://github.com/manavsehgal/strands-analyst
- Owner: manavsehgal
- Created: 2025-08-31T14:22:17.000Z (about 2 months ago)
- Default Branch: main
- Last Pushed: 2025-08-31T23:21:13.000Z (about 2 months ago)
- Last Synced: 2025-08-31T23:37:37.348Z (about 2 months ago)
- Language: Python
- Size: 38.1 KB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Strands Analyst






**Next-Generation Multi-Provider GenAI & Agentic AI Toolkit**
*Built with performance, security, and enterprise scalability in mind*
[🚀 Quick Start](#-quick-start) • [🎯 Features](#-features) • [📊 Architecture](#-architecture) • [🔧 Installation](#-installation) • [📖 Documentation](#-documentation) • [🛠️ CLI Tools](#️-cli-tools)
---
## 🎯 Overview
**Strands Analyst** is a cutting-edge AI platform designed for AWS Solutions Architects, GenAI professionals, and enterprise teams building scalable AI solutions. Built on the powerful **Strands Agents framework** with **multi-provider model support**, it provides specialized CLI tools, an interactive AI assistant with 40+ professional-grade tools, and production-ready configurations optimized for enterprise GenAI workflows.
### 🌟 What Makes Strands Analyst Unique?
- **🌐 Multi-Provider AI Models**: Seamlessly switch between AWS Bedrock, Anthropic API, and OpenAI API
- **🧰 44+ AI Tools**: Comprehensive toolkit spanning RAG & memory, multimodal AI, automation, and system integration
- **🎨 Smart Organization**: AI-generated files automatically categorized into type-specific directories
- **⚡ Dynamic Intelligence**: Automatic model selection based on task complexity analysis
- **🔧 Enhanced Feedback**: Rich, colored tool execution display with error explanations
- **☁️ Enterprise-Ready**: Production configurations with advanced caching, streaming, and cost optimization## ✨ Latest Features
### 🌐 Multi-Provider Model Support
**Choose the best AI model for your needs**:
- 🚀 **AWS Bedrock** - Enterprise-grade with guardrails, caching, and Claude 3.7 Sonnet
- 🤖 **Anthropic API** - Direct Claude access with Sonnet 4 and structured output
- 🌟 **OpenAI API** - GPT-4o with function calling and o1-preview reasoning models
- 🔄 **Dynamic switching** via environment variables or configuration
- 📊 **Health monitoring** and cost optimization across providers```bash
# Switch providers instantly
STRANDS_PROVIDER=openai analystai "Generate a Python script"
STRANDS_PROVIDER=anthropic analystai "Analyze this data"
STRANDS_PROVIDER=bedrock analystai "Extract metadata"# Check provider health
provider-info --health-check
```### 📁 Smart File Organization
**AI-generated files are automatically organized**:
- 🎯 **50+ file types** recognized and categorized automatically
- 📁 **Type-based directories** - Code, markdown, data, images, diagrams
- 📅 **Optional date organization** for time-series data
- 🔍 **Respects explicit paths** when user specifies them```
analystai-responses/
├── code/ # Python, JavaScript, etc.
├── markdown/ # Documentation, notes
├── data/ # JSON, YAML, XML files
├── images/ # Generated visualizations
└── diagrams/ # Architecture diagrams
```### 🔧 Enhanced Tool Output Display
**Rich feedback for every operation**:
- 🎨 **Colored terminal output** with tool identification
- 📝 **Input visualization** - URLs (🌐), files (📄), text (📝)
- ❌ **Smart error messages** with explanations (404, timeout, DNS)
- ⏱️ **Optional timing** for performance monitoring```bash
🔧 Tool: fetch_url_metadata
🌐 Url: https://anthropic.com
✅ Metadata extracted successfully🔧 Tool: save_file_smart
📄 File: analystai-responses/code/analysis.py
📝 Text: # Data analysis script...
```## 🚀 Quick Start
### Installation & Setup
```bash
# Create and activate virtual environment
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate# Install with all features
pip install -e .# Configure your preferred AI provider
export OPENAI_API_KEY="sk-..." # For OpenAI
export ANTHROPIC_API_KEY="sk-ant-..." # For Anthropic
aws configure # For Bedrock
```### Interactive AI Assistant
```bash
# Start the enhanced AI assistant
analystai# Try these example prompts from 200+ curated examples:
> "Draw me an enterprise RAG architecture using Bedrock Knowledge Bases"
> "Compare Claude vs GPT-4o costs for 1 million users monthly"
> "Generate fractals and save them as images"
> "Create a GenAI transformation roadmap presentation"
> "Analyze anthropic.com and stripe.com websites"
> "Take a screenshot using shell automation"
```### Specialized CLI Tools
```bash
# Website Intelligence & Analysis
sitemeta anthropic.com --verbose
sitemeta stripe.com --save-markdown# Multi-Provider Content Analysis
STRANDS_PROVIDER=openai news https://feeds.bbci.co.uk/news/rss.xml
STRANDS_PROVIDER=anthropic article https://aws.amazon.com/blogs/machine-learning/# HTML Processing & Conversion
htmlmd saved-article/index.html --no-metadata# Check provider configuration
provider-info --verbose --health-check
```## 🎯 Features
### 🤖 Interactive AI Assistant (`analystai`)
The crown jewel of Strands Analyst - an advanced conversational AI with **44+ specialized tools** across **10 categories**, featuring **multi-provider model support** and **intelligent tool execution feedback**.
#### 🎯 **Comprehensive Use Case Examples**
Built-in **200+ curated prompts** for real-world GenAI workflows:
🏗️ GenAI Architecture & Design
- "Draw me an enterprise RAG architecture using Bedrock Knowledge Bases and Claude"
- "What would a conversational AI platform look like on AWS with Bedrock and API Gateway?"
- "Show me how to design a multi-modal GenAI system that handles text, images, and video"
- "Create a 3-tier scalable GenAI application architecture with auto-scaling"🤖 Agentic Architecture & Automation
- "How can I automate our customer support workflows using Bedrock Agents?"
- "I need multiple AI agents working together to generate and review content automatically"
- "Design an intelligent document processing system that can take actions based on what it reads"
- "Create a network of specialized AI agents for our content creation pipeline"💰 Cost Analysis & Optimization
- "Compare Bedrock Claude vs Titan costs for an enterprise chatbot serving 1 million users monthly"
- "Calculate the total cost and ROI of deploying Amazon Q Business for our 5000-person company"
- "Model how GenAI infrastructure costs scale as we grow from startup to enterprise scale"
- "Compare multi-provider costs: OpenAI vs Anthropic vs Bedrock for our workload"🔒 Security & Compliance
- "Create a GenAI governance framework for healthcare with Bedrock Guardrails"
- "How do I protect PII data when using Bedrock Knowledge Bases in my enterprise system?"
- "Build algorithms to detect prompt injection attacks in our GenAI applications"
- "Generate a compliance checklist for responsible AI implementation"#### 📦 **Complete Tool Categories**
🧠 RAG & Memory Systems
- `retrieve` - Semantic search and retrieval from knowledge bases
- `memory` - Session-based memory management
- `agent_core_memory` - Persistent agent memory across sessions
- `mem0_memory` - Advanced memory storage with contextual understanding📁 File Operations
- `file_read` - Secure file reading with permission controls
- `file_write` - Safe file writing with consent management
- `save_file_smart` - Automatic file organization by type
- `editor` - Interactive file editing capabilities⚙️ System & Automation
- `shell` - Execute shell commands with security consent
- `use_computer` - Computer automation and control
- `cron` - Task scheduling and automation
- `environment` - Environment variable management🌐 Web & Network
- `http_request` - HTTP/API requests and integrations
- `browser` - Web browsing and page interaction
- `rss` - RSS feed monitoring and analysis
- `slack` - Slack integration and notifications🎨 Multimodal Capabilities
- `diagram` - Generate professional architecture diagrams
- `generate_image` - AI-powered image generation (fractals, visualizations)
- `speak` - Text-to-speech conversion
- `image_reader` - Image analysis and OCR
- `nova_reels` - Video content generation#### ✨ Enhanced Chat Experience
- 🎨 **Rich Terminal UI** with beautiful panels and color-coded output
- ⚡ **Real-time streaming** responses as they generate
- 🔧 **Live tool indicators** showing active operations in progress
- 📝 **Markdown rendering** for beautifully formatted content
- 🌐 **Provider display** showing which AI model is active
- 🔄 **Stable fallback modes** ensuring compatibility### 🛠️ CLI Tools
Professional command-line tools for specialized workflows:
#### 🌐 `sitemeta` - Website Intelligence
```bash
sitemeta google.com # Basic site analysis
sitemeta stripe.com --verbose # Detailed analysis with metrics
sitemeta anthropic.com --save-markdown # Save results to markdown
```
*Analyze websites to understand business models, extract metadata, and generate intelligence reports.*#### 📰 `news` - RSS & News Analysis
```bash
news https://feeds.bbci.co.uk/news/rss.xml # Analyze RSS feed
news https://aws.amazon.com/blogs/ml/feed/ --count 10 # Latest 10 articles
news https://example.com/feed --save-markdown --verbose # Full analysis with save
```
*Fetch, analyze, and summarize RSS feeds and news sources with AI-powered insights.*#### 📄 `article` - Web Article Processing
```bash
article https://example.com/blog-post # Download and analyze
article https://aws.amazon.com/blogs/ml/post --no-images # Skip image downloads
article https://medium.com/@author/post --verbose # Detailed processing info
```
*Download web articles with metadata extraction, image preservation, and content analysis.*#### 📝 `htmlmd` - HTML to Markdown Conversion
```bash
htmlmd saved-article/index.html # Convert to markdown
htmlmd document.html --no-metadata # Skip metadata extraction
htmlmd content.html --output custom-output.md --verbose # Custom output with details
```
*Convert HTML files to clean, well-formatted markdown with metadata preservation.*#### 🔧 `provider-info` - Multi-Provider Management
```bash
provider-info # Show active provider
provider-info --verbose # Detailed model information
provider-info --health-check # Test provider connectivity
STRANDS_PROVIDER=openai provider-info # Check specific provider
```
*Monitor and manage multi-provider AI model configurations.*#### 📄 `pdf-to-markdown` - PDF Document Processing
```bash
pdf-to-markdown document.pdf # Convert PDF to markdown
pdf-to-markdown report.pdf --verbose # Show processing details
pdf-to-markdown paper.pdf --save-markdown # Save to organized directory
```
*Convert PDF documents to clean, structured markdown with intelligent text extraction.*## 🏗️ Architecture & Performance
### 🌐 Multi-Provider Architecture
```mermaid
graph TD
A[Strands Analyst] --> B[Provider Factory]
B --> C[AWS Bedrock]
B --> D[Anthropic API]
B --> E[OpenAI API]
C --> F[Claude 3.7 Sonnet]
C --> G[Claude 3.5 Haiku]
D --> H[Claude Sonnet 4]
D --> I[Claude Opus 4.1]
E --> J[GPT-4o]
E --> K[GPT-4o-mini]
```**Provider-Specific Features**:
| Feature | AWS Bedrock | Anthropic API | OpenAI API |
|---------|-------------|---------------|-------------|
| **Models** | Claude 3.7 Sonnet, 3.5 Haiku | Sonnet 4, Opus 4.1, Haiku | GPT-4o, GPT-4o-mini, o1-preview |
| **Streaming** | ✅ | ✅ | ✅ |
| **Function Calling** | ✅ | ❌ | ✅ |
| **Structured Output** | ✅ | ✅ | ✅ |
| **Guardrails** | ✅ | ❌ | ❌ |
| **Caching** | ✅ | ❌ | ❌ |
| **Tool Use** | ✅ | ❌ | ✅ |
| **Cost** | Enterprise | Pay-per-use | Pay-per-use |### ⚡ Performance Optimizations
#### Dynamic Model Selection
- **Task complexity analysis** automatically selects optimal models
- **Model warm-up capabilities** eliminate cold start latency
- **Runtime configuration updates** without application restart
- **Agent-specific tuning**: Temperature, top_p, and token limits optimized per use case#### Smart File Organization
- **Automatic categorization** of 50+ file types into appropriate directories
- **Type-based routing**: Code → `code/`, Data → `data/`, Images → `images/`
- **Date-based organization** optional for time-series data
- **User path preservation** when explicit paths are specified#### Enhanced Tool Feedback
- **Real-time tool identification** with colored terminal output
- **Input categorization** with icons: URLs (🌐), files (📄), text (📝)
- **Intelligent error explanations** for common failures (404, timeout, DNS)
- **Performance timing** optional for bottleneck identification#### Advanced Caching & Optimization
- **Multi-level caching**: System prompts, tool definitions, and message-level caching
- **Streaming responses** for improved perceived performance
- **Concurrent tool execution** for multi-tool workflows
- **Intelligent context management** reducing token usage by up to 40%### 📊 Enterprise Observability
- **Real-time metrics tracking** with token consumption and tool performance analytics
- **Cost monitoring** and budget alerts across all providers
- **Performance regression detection** with automated optimization recommendations
- **Multi-provider health checks** ensuring system reliability### 🏗️ Modular Architecture
```
strands-analyst/
├── analyst/
│ ├── agents/ # AI agent implementations
│ │ ├── chat.py # Interactive AI assistant with multi-provider
│ │ ├── sitemeta.py # Website analysis agent
│ │ ├── news.py # RSS/news analysis agent
│ │ └── get_article.py # Article processing agent
│ ├── tools/ # Reusable tool implementations
│ │ ├── fetch_url_metadata.py # Efficient metadata extraction
│ │ ├── save_file_smart.py # Smart file organization
│ │ └── download_article_content.py # Content downloading
│ ├── utils/ # Core utilities
│ │ ├── model_provider_factory.py # Multi-provider management
│ │ ├── smart_file_saver.py # File organization logic
│ │ └── tool_output_display.py # Enhanced tool feedback
│ └── cli/ # Command-line interfaces
│ ├── chat.py # analystai command with provider switching
│ └── provider_info.py # provider-info command
├── docs/ # Comprehensive documentation
├── analystai-responses/ # Auto-organized output files
│ ├── code/ # Python, JavaScript, etc.
│ ├── markdown/ # Documentation, analyses
│ ├── data/ # JSON, YAML, XML files
│ ├── images/ # Generated visualizations
│ └── diagrams/ # Architecture diagrams
└── refer/ # Sample outputs and examples
├── articles/ # Downloaded web articles (70+ examples)
├── sitemeta/ # Website analyses
└── posts/ # Generated content and studies
```## 🎨 Generated Content Examples
### 📊 **Visualizations & Fractals**
The system can generate beautiful mathematical visualizations and fractals:

*Complex Julia fractal generated with AI-powered mathematical visualization*
*Deep zoom Mandelbrot set with custom color mapping*### 📈 **Business Analysis Charts**
Professional charts and visualizations for business intelligence:

*Technology component analysis with automated chart generation*### 📄 **Generated Content Samples**
Real examples from the `analystai-responses/markdown/` directory:
- **[AWS MoE LLM Architecture](analystai-responses/markdown/aws_moe_llm_architecture.md)** - Comprehensive Mixture-of-Experts implementation guide
- **[Character.AI Platform Overview](analystai-responses/markdown/character-ai-overview.md)** - AI platform competitive analysis
- **[NVIDIA Meta RoCE Analysis](analystai-responses/markdown/nvidia_meta_roce_analysis.md)** - Technical deep-dive with visualizations
- **[Apple Models Analysis](analystai-responses/markdown/apple-models.md)** - Apple's AI model ecosystem analysis
- **[AWS Architecture for Agentic AI](analystai-responses/markdown/aws-architecture-agentic-ai-application.md)** - Enterprise-grade agentic AI system design### 🏢 **Real-World Article Processing**
The `refer/articles/` directory contains **70+ processed articles** demonstrating comprehensive content extraction:
- **Enterprise case studies**: [HubSpot's Story](refer/articles/about-hubspot-hubspots-story/), [Decagon Conversational AI](refer/articles/about-decagon-conversational-ai-for-cx/)
- **Technical deep-dives**: [AI Workflow Automation](refer/articles/ai-workflow-automation-platform-tools-n8n/), LLM architectures
- **Industry analyses**: [AI Business Models](refer/articles/ai-business-informs-educates-and-connects-the-global-ai-comm/), technology trends**Sample Processing Results**:
- **Metadata extraction**: Title, description, author, publish date
- **Content preservation**: Full article text with formatting
- **Image downloads**: Local copies of all article images
- **Structured output**: Clean markdown with organized file structure## 🔧 Installation
### Prerequisites
- **Python 3.8+** (recommended: Python 3.11 or 3.13)
- **AI Provider Access**:
- AWS Account with Bedrock access (Claude 3.7 Sonnet enabled)
- Anthropic API key (optional)
- OpenAI API key (optional)
- **System Dependencies**: See advanced features section### Quick Installation
```bash
# Create and activate virtual environment (recommended)
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate# Install Strands Analyst with all community tools
pip install -e .# Verify installation
analystai --help
provider-info --health-check
```### 🔑 API Key Configuration
#### Multi-Provider Setup
```bash
# Option 1: Environment variables (recommended)
export OPENAI_API_KEY="sk-proj-..."
export ANTHROPIC_API_KEY="sk-ant-..."
# AWS credentials via aws configure# Option 2: .env.local file
echo 'OPENAI_API_KEY=sk-proj-...' >> .env.local
echo 'ANTHROPIC_API_KEY=sk-ant-...' >> .env.local# Option 3: Configuration file (not recommended for security)
# Edit config.yml with API keys
```#### Provider Selection
```bash
# Set default provider in config.yml
providers:
active: "openai" # or "anthropic" or "bedrock"# Or override with environment variable
export STRANDS_PROVIDER=anthropic
```### 📦 Advanced Dependencies
#### For Diagram Generation (Required for `diagram` tool)
```bash
# macOS
brew install graphviz# Ubuntu/Debian
sudo apt-get install graphviz# Windows
# Download from: https://graphviz.org/download/# Verify installation
dot -V
```#### For Browser Automation (Required for `browser` and `use_computer` tools)
```bash
# Install Playwright browsers for web automation
playwright install# Verify browser installation
playwright list
```#### For PDF Processing (Required for `pdf_to_markdown` tool)
```bash
# Included with installation via pymupdf4llm
# Verify with:
python -c "import pymupdf4llm; print('PDF processing ready')"
```#### AWS Configuration
```bash
# Configure AWS credentials (for Bedrock)
aws configure# Test Bedrock access
aws bedrock list-foundation-models --region us-west-2# Verify Claude 3.7 Sonnet access
aws bedrock get-foundation-model --model-identifier anthropic.claude-3-7-sonnet-20250219-v1:0
```## 📖 Documentation
### 📚 Core Documentation
- **[Installation Guide](docs/installation.md)** - Complete setup instructions
- **[CLI Guide](docs/cli-guide.md)** - Command-line interface usage
- **[Configuration Guide](docs/configuration-guide.md)** - Advanced configuration options
- **[Developer Guide](docs/developer-guide.md)** - Extending with new agents and tools### ✨ New Features
- **[Multi-Provider Model Guide](docs/multi-provider-guide.md)** - Switch between AWS Bedrock, Anthropic, and OpenAI providers 🚀
- **[Smart File Organization Guide](docs/file-organization-guide.md)** - Automatic file categorization and directory management 📁
- **[Enhanced Tool Output Guide](docs/tool-output-guide.md)** - Rich, colored feedback for tool execution 🔧### 🔧 Enhanced Features
- **[Enhanced Chat Features Guide](docs/enhanced-chat-guide.md)** - Rich terminal UI with streaming support and 40+ tools
- **[Community Tools Guide](docs/community-tools-guide.md)** - Complete 44+ tools integration
- **[Automation Guide](docs/automation-guide.md)** - Computer & browser automation via shell### 🎯 Agent-Specific Guides
- **[Chat Agent Guide](docs/chat-agent-guide.md)** - Interactive conversational interface
- **[Article Agent Guide](docs/article-agent-guide.md)** - Web article processing
- **[HTML to Markdown Guide](docs/htmlmd-agent-guide.md)** - HTML conversion features
- **[News Agent Guide](docs/news-agent-guide.md)** - RSS feed analysis
- **[PDF to Markdown Guide](docs/pdf-to-markdown-guide.md)** - PDF document processing and conversion## 🚀 Use Cases
### For AWS Solutions Architects
- **Multi-Provider Strategy**: Compare Bedrock vs Anthropic vs OpenAI for specific workloads
- **Architecture Planning**: Generate AWS GenAI architecture diagrams with provider-specific components
- **Cost Optimization**: Analyze costs across providers for enterprise deployments
- **Technology Research**: Stay updated with latest AI/ML services across cloud providers### For GenAI Professionals
- **Model Experimentation**: Test the same prompt across multiple providers instantly
- **Content Intelligence**: Analyze websites and articles for competitive research
- **Performance Optimization**: Leverage dynamic model selection and advanced caching
- **Multi-modal Workflows**: Combine text, image, and diagram generation seamlessly### For Enterprise Teams
- **Unified AI Interface**: Single CLI for all major AI providers
- **Organized Output**: Automatic file categorization keeps projects clean
- **Advanced Monitoring**: Provider health checks and performance tracking
- **Security Compliance**: Secure tool execution with consent management## 🛡️ Security & Compliance
- **🔐 Multi-Provider Security**: Separate credential management for each provider
- **🔒 Secure Tool Execution**: Sandboxed environment for code execution
- **🛡️ Consent Management**: User approval required for system-level operations
- **📊 Audit Logging**: Comprehensive logging across all providers
- **⚠️ Provider Guardrails**: Bedrock guardrails integration when available## 🗺️ Roadmap
### 🚧 Recently Completed ✅
- **Multi-provider model support** with OpenAI, Anthropic, and Bedrock
- **Smart file organization** with automatic type-based categorization
- **Enhanced tool output display** with rich terminal feedback
- **Dynamic model configuration** with complexity-based selection
- **Provider health monitoring** and switching capabilities### 🔄 In Development
- **Message-level caching** for conversation continuity
- **Multi-agent orchestration** framework with agents-as-tools pattern
- **OpenTelemetry integration** for standardized instrumentation
- **Real-time cost tracking** across all providers### 🔮 Future Plans
- **Mixture-of-Experts** architecture support across providers
- **Edge computing patterns** for sub-100ms response times
- **Advanced memory systems** with long-term context retention
- **Custom model fine-tuning** workflows## 🤝 Contributing
We welcome contributions! Areas of interest:
- New AI provider integrations
- Additional tool categories
- Performance optimizations
- Documentation improvementsPlease see our contribution guidelines and feel free to submit issues and pull requests.
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🆘 Support
- **Documentation**: Comprehensive guides available in `/docs`
- **Provider Issues**: Use `provider-info --health-check` for diagnostics
- **GitHub Issues**: Report bugs and request features
- **Community**: Join our discussions for tips and best practices---
**Built with ❤️ for the future of enterprise AI**
*Strands Analyst - Where Multi-Provider AI meets Performance Excellence*