Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mancinimassimiliano/DeepLearningLab
Exercise for the deep learning course
https://github.com/mancinimassimiliano/DeepLearningLab
Last synced: 9 days ago
JSON representation
Exercise for the deep learning course
- Host: GitHub
- URL: https://github.com/mancinimassimiliano/DeepLearningLab
- Owner: mancinimassimiliano
- License: mit
- Created: 2019-03-26T10:45:06.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-05-24T10:34:06.000Z (over 4 years ago)
- Last Synced: 2024-08-02T14:08:33.507Z (3 months ago)
- Language: Jupyter Notebook
- Size: 14.1 MB
- Stars: 8
- Watchers: 1
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Deep Learning Lab
A series of Deep Learning exercises to practice with [PyTorch](https://pytorch.org/).
Professor: [Elisa Ricci](https://scholar.google.ca/citations?user=xf1T870AAAAJ&hl=en)
Lab Instructors:
* [Massimiliano Mancini](https://mancinimassimiliano.github.io/) (Email: [email protected])
* [Subhankar Roy](https://scholar.google.it/citations?user=YfzgrDYAAAAJ&hl=en) (Email: [email protected])
* [Aliaksandr Siarohin](https://scholar.google.it/citations?user=uMl5-k4AAAAJ&hl=en) (Email: [email protected])
* [Andrea Simonelli](https://scholar.google.it/citations?user=wK2I1ZsAAAAJ&hl=en) (Email: [email protected])## Introduction
This is the official github webpage of the Deep Learning course for the academic year 2018/19 taught at University of Trento by Prof. Elisa Ricci. Hands-on experience will be provided for the concepts taught during the lectures. [Google Colab](https://colab.research.google.com) will be used to run the codes in GPU environment.N.B. Lab related queries should be directed to the Lab instructors.
## Programming Exercises
* [Lab1: Train a multi-layer perceptron (MLP) on MNIST](https://github.com/mancinimassimiliano/DeepLearningLab/tree/master/Lab1)
* [Build your very first Neural Network](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab1/myFirstNN.ipynb)
* [Visualize training dynamics with Tensorboard](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab1/myFirstNN_solution_with_vis.ipynb)
* [Lab2: Train Convolutional Neural Networks (CNNs)](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab2)
* [MLP for classifying *translated* MNIST](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab2/non_centered_mlp.ipynb)
* [Train a LeNet-5 for MNIST classification](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab2/convolutional_neural_networks.ipynb)
* [Lab3: Transfer Learning](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab3)
* [Fine-tuning Alexnet](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab3/finetune_alexnet.ipynb)
* [Batch Normalization from scratch](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab3/batch_normalization.ipynb)
* [Unsupervised Domain Adaptation](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab3/domain_adaptation.ipynb)
* [Lab4: Recurrent Neural Network](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab4)
* [Lab5: Generative Adversarial Network](https://github.com/mancinimassimiliano/DeepLearningLab/blob/master/Lab5)
### Prerequisites
* Python3