Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/manishkr1754/nifty50_data_analysis_nsetools_nsepy_python
NIFTY50 Data Analysis from scratch (Data Extraction & Visualization to Investment Insights)
https://github.com/manishkr1754/nifty50_data_analysis_nsetools_nsepy_python
candlestick-chart cufflinks data-analysis data-visualization heikin-ashi interactive-visualizations moving-average nsepy nsetools plotly portfolio-analysis portfolio-analytics portfolio-and-investment-analysis python sharpe-ratio technical-analysis
Last synced: about 5 hours ago
JSON representation
NIFTY50 Data Analysis from scratch (Data Extraction & Visualization to Investment Insights)
- Host: GitHub
- URL: https://github.com/manishkr1754/nifty50_data_analysis_nsetools_nsepy_python
- Owner: manishkr1754
- Created: 2023-01-24T07:07:04.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2023-05-20T06:03:22.000Z (over 1 year ago)
- Last Synced: 2024-12-11T04:06:48.478Z (about 2 months ago)
- Topics: candlestick-chart, cufflinks, data-analysis, data-visualization, heikin-ashi, interactive-visualizations, moving-average, nsepy, nsetools, plotly, portfolio-analysis, portfolio-analytics, portfolio-and-investment-analysis, python, sharpe-ratio, technical-analysis
- Language: Jupyter Notebook
- Homepage:
- Size: 6.38 MB
- Stars: 12
- Watchers: 3
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# NIFTY50 Data Analysis using Python
![image](https://user-images.githubusercontent.com/114581035/216782163-eea21cbf-2560-4919-a28c-3ecf3cfbb499.png)# Detailed Article @ Medium
- [NIFTY50 Data Analysis Series using Python](https://medium.com/@kmrmanish/nifty50-data-analysis-using-python-d9227e525894)
- [A Data Extraction Guide for NIFTY50 Historical Data [1]](https://medium.com/@kmrmanish/a-data-extraction-guide-for-nifty50-historical-data-1-220a097c7a1a)
- [Interactive Data Visualization for NIFTY50 Historical Data [2]](https://medium.com/@kmrmanish/interactive-data-visualization-for-nifty50-historical-data-2-5a7fb672a8ec)
- [A Macro View of NIFTY50 Historical Data through High-Low and Open-Close Analysis [3]](https://medium.com/@kmrmanish/a-macro-view-of-nifty50-historical-data-through-high-low-and-open-close-analysis-3-753212d7f88b)
- [Gap Up-Gap Down Analysis for NIFTY50 Historical Data [4]](https://medium.com/@kmrmanish/gap-up-gap-down-analysis-for-nifty50-historical-data-4-126e51f21ce1)# Structure of NIFTY50 Data Analysis Series
1. **Data Extraction :** Download NIFTY50 daily data for last 15 years using API like nsetools/nsepy
2. **Data Visualization :** Plot the interactive trends(Line, Candlesticks and Heikin Ashi Charts) for different period using Cufflinks and Plotly
3. **High-Low Analysis & Open-Close Analysis**
4. **Gap Up-Gap Down Analysis**
5. **Simple Moving Average (SMA) Analysis :** Calculate and Plot 7 days, 14 days, 21 days, 50 days and 200 days SMA
6. **Exponential Moving Average (EMA) Analysis :** Calculate and Plot 7 days, 14 days, 21 days, 50 days and 200 days EMA
7. **Monthly Return Analysis :** Calculate and Plot %Monthly Return and Positive & Negative Return Count
8. **Portfolio Analysis :** One Time Lump-sum Investment
9. **Portfolio Analysis :** Monthly SIP on 1st trading day of the month
10. **Portfolio Analysis :** Invest only on First Gap Down Day of the every month
11. **Portfolio Analysis :** Invest on All Gap Down Days
12. **Sharpe Ratio Comparison :** Compare different investment strategies and risk adjusted returns# Approach
Extracted 15 years NIFTY50 data using **nsepy/nsetools**, performed **technical analysis**, used **Cufflinks** and **Plotly** for interactive **candlestick** and **Heikin Ashi charts**# Outcome
Understood NIFTY50 trends through interactive data visualization and provided investment insights
![1](https://user-images.githubusercontent.com/114581035/233861339-f3502eec-019b-4bff-aa3a-332422d71f45.png)
![2](https://user-images.githubusercontent.com/114581035/233861391-8c5ed324-7fab-43d6-97c6-3aa18f4f95be.png)
![3](https://user-images.githubusercontent.com/114581035/233861469-603e4aac-0a3f-4842-96ef-deff7ac73cf8.png)
![4](https://user-images.githubusercontent.com/114581035/233861525-f12faa1e-9f05-4cd8-b026-e70c12c1f9a4.png)
![5](https://user-images.githubusercontent.com/114581035/233861675-3b1f91f0-879c-425b-afe3-355fdead4b53.png)
![6](https://user-images.githubusercontent.com/114581035/233861721-0c900a67-3686-4352-9c27-38f14ff0848d.png)
![7](https://user-images.githubusercontent.com/114581035/233861766-cc7b08ac-27df-46ba-b5fc-3e2006c19100.png)
![8](https://user-images.githubusercontent.com/114581035/233861792-be9b654d-746a-47e0-b8c1-1453c8e0ab63.png)
![9](https://user-images.githubusercontent.com/114581035/233861829-f1b9725d-ef94-48a3-b4e9-d1b5fad7d675.png)
![10](https://user-images.githubusercontent.com/114581035/233861872-7ed4f0e7-acc5-46b0-98ae-8d3ea8f5cc1f.png)
![11](https://user-images.githubusercontent.com/114581035/233861907-1b35f048-2c6c-48f7-b9d6-b3b1446274af.png)
![12](https://user-images.githubusercontent.com/114581035/233862025-90b9fc6e-2027-4ec4-815e-abc7f626e0c8.png)
![13](https://user-images.githubusercontent.com/114581035/233862041-13f6f9d0-971b-4e6a-a5d1-4bc3b16e2d6b.png)
![14](https://user-images.githubusercontent.com/114581035/233862078-6ec0d67c-8e45-404c-847b-fb2d418d5cdd.png)
![15](https://user-images.githubusercontent.com/114581035/233862099-f7ca6631-1e8b-415a-aeb9-4a9dcb035ffe.png)
![16](https://user-images.githubusercontent.com/114581035/233862337-a3a82950-9da3-4217-bc0b-64f800b4d468.png)
![17](https://user-images.githubusercontent.com/114581035/233862366-e547f163-a7a9-4372-a336-d1442466ee27.png)
![18](https://user-images.githubusercontent.com/114581035/233862388-40446e0c-f821-4234-84d4-dc34ab50c37c.png)
![19](https://user-images.githubusercontent.com/114581035/233862440-9e3f7506-8a62-4d35-b547-22f2b8a25365.png)
![20](https://user-images.githubusercontent.com/114581035/233862457-97826434-3f7d-4798-bdb0-6d67b1cb6ffa.png)